

1 USB/PCIe/PXIe-5321,5322,5323,5324 Specification

Family of Simultaneous Data Acquisition Modules

Overview

USB/PCIe/PXIe-5321,5322,5323,5324 is a high-precision, high-resolution, up to 32-channel simultaneous voltage measurement module. It can be used to measure the DC voltage, the AC voltage as well as many dynamic signals. Depending on the model number, a JY-5321/5322/5323/5324 series provide different AI channels, sampling rate.

⌚ Please download JYTEK [<JPEDIA>](#), you can quickly inquire the product prices, the key features and available accessories.

1.1 Main Features

- High accuracy: 390 ppm
- 32 (JY-5321, JY-5323) / 16 (JY-5322, JY-5324) simultaneous voltage measurement channels
- 1 MS/s per channel(JY-5321 JY-5322)
- 200 KS/s per channel (JY-5323JY-5324)
- 16 bits resolution
- Up to 220 KHz bandwidth
- Better than -90dB THD
- System noise as low as 7 μ Vrms
- Up to 8 μ V resolution
- Voltage ranges: $\pm 0.25V/\pm 0.5V/\pm 1V/\pm 2V/\pm 5V/\pm 10V$ (JY-5321,JY-5322)
- $\pm 0.5V/\pm 1V/\pm 5V/\pm 10V$ (JY-5323,JY-5324)
- 240M samples of FIFO buffer
- Analog and Digital Trigger

1.2 Analog Input Specifications

Analog Input	5323/5324	5321/5322		
Number of Input channels	32/16	32/16		
ADC resolution (Bits)	16			
Sampling Rate	200 K Sample/s	1 M Sample/s		
Clock	Internal/External			
Input range(V)	$\pm 10/\pm 5/\pm 1/\pm 0.5$	$\pm 10/\pm 5/\pm 2/\pm 1/\pm 0.5/\pm 0.25$		
Maximum Working Voltage(V)	± 10 V (ref. AIGND)			
Input Terminal Type	Differential			
Input impedance(AI+ vs AIGND)	>1 G Ω 0.5 pF			
Input impedance(AI- vs AIGND)	>1 G Ω 0.5 pF			
Input coupling	DC			
CMRR(@60 Hz) ^{*1}	99 dB	88 dB (25 KHz Bandwidth) 91 dB (220 KHz Bandwidth)		
Crosstalk(@10 KHz) ^{*1}	Adjacent channels : -90dB Non-adjacent channels : -95dB			
Input FIFO	240M Samples			
Trigger Type	Analog/Digital/Software			
Analog Trigger Voltage Range	Software Programmable Between -10 V ~ +10 V			
Trigger Mode	StartTrigger,ReferenceTrigger,ReTrigger			
Interval of retrigger	5 Samples			
Bandwidth (-3 dB) ^{*2}	23 kHz	25 kHz (25 kHz Bandwidth) 220 kHz (220 kHz Bandwidth)		
Overvoltage protection	-27 V ~ +27 V			
Input current during overvoltage protection	\leq 6 mA			
*1 ± 1 V Range Typical Test				
*2 ± 10 V Range Typical Test				

Table 1 Analog Input Specifications

1.3 Digital IO Specifications

Number of channels	16(JY-5321,JY-5323)/8(JY-5322,JY-5324)
Ground reference	D GND
Directional control	Independent control of each port
Initial state	Input
Digital Input	Logic Low: V_{IL} Min : 0 V / Max : 1.0 V Logic High: V_{IH} Min : 2V / Max : 5.3V
Digital Output	Logic Low : 0 V, I_{OL} Max: 24 mA Logic High : 2.6 V~5 V, I_{OH} : -24 mA~0 mA
Overvoltage Protection	Continuous 30 mA -3.9 V~ 8.9 V; Instantaneous 200 mA -25 V~ 25 V; Duty cycle of instantaneous current pulse does not exceed 15%

Table 2 DIO Specifications

1.4 PFI Specifications

Number of channels	16(JY-5321,JY-5323)/8(JY-5322,JY-5324)
External digital trigger interface	Trigger voltage 3.3 V TTL; trigger edge: Rising/Falling
Initial state	Input

Table 3 PFI Specifications

1.5 DC Accuracy

An instrument's DC accuracy is defined by the gain and offset errors as follows:

$$\text{Accuracy} = \text{Gain Error} (\% \text{ of reading}) + \text{Offset Error} (\% \text{ of range})$$

Equation 1 Gain and Offset Errors

It should be noted when the reading is close to zero, the gain error is very small and negligible, the offset error is dominant; when the reading is getting close to the full range, the gain error becomes more significant.

1.5.1 Basic JY-5321/5322/5323/5324 DC Accuracy

The Basic DC Accuracy of JY-5321/JY-5322 .

JY-5321/5322 Basic Accuracy = $\pm(\% \text{ Reading} + \% \text{ Range})$							24 Hr Full Scale Accuracy	90 Days Full Scale Accuracy
Nominal Range (V)	24 Hour Tcal $\pm 1^\circ\text{C}$			90 Days Tcal $\pm 5^\circ\text{C}$				
0.25	0.005	+	0.019	0.033	+	0.019	61 μV	130 μV
0.5	0.010	+	0.025	0.039	+	0.029	180 μV	340 μV
1	0.009	+	0.022	0.039	+	0.022	320 μV	610 μV
2	0.008	+	0.019	0.040	+	0.016	550 μV	1100 μV
5	0.007	+	0.021	0.012	+	0.041	1500 μV	2700 μV
10	0.006	+	0.017	0.012	+	0.027	2300 μV	3800 μV

1. Accuracies apply to Sample Rate 1 MS/s for JY5321/5322.
 2.Specifications are for 1 hour warm up and Tcal is 23 °C.
 3.Add 20% to Gain and Offset errors From 91 days to 1 year.

Table 4 AI Accuracy of JY-5321/JY-5322

The Basic DC Accuracy of JY-5323/JY-5324 is shown in Table 5.

JY-5323/5324, AI Basic Accuracy = $\pm(\% \text{ Reading} + \% \text{ Range})$							24 Hr Full Scale Accuracy	90 Days Full Scale Accuracy
Nominal Range (V)	24 Hour Tcal $\pm 1^\circ\text{C}^2$			90 Days Tcal $\pm 1^\circ\text{C}^2$				
0.5	0.005	+	0.010	0.014	+	0.012	80 μV	130 μV
1	0.006	+	0.010	0.013	+	0.011	150 μV	240 μV
5	0.006	+	0.012	0.017	+	0.013	850 μV	1500 μV
10	0.006	+	0.010	0.015	+	0.012	1600 μV	2600 μV

1. Accuracies apply to Sample Rate 200KS/s for JY5323/5324.
 2.Specifications are for 1 hour warm up and Tcal is 23 °C.
 3.Add 20% to Gain and Offset errors From 91 days to 1 year.

Table 5 AI Accuracy of JY-5323/JY-5324

1.5.2 System Noise

Range (V)	SystemNoise(μVrms)
0.25	9
0.5	12
1	20
2	39
5	95
10	190

Table 6 System Noise of JY-5322

1.5.3 Temperature Drift Adjustment

If JY-5324 operates outside the calibration temperature range, typically $\text{Tcal} \pm 5^\circ\text{C}$, the accuracy must be adjusted by Table 7. The entries are per degree C. For example, if the

operating temperature is 2°C outside the calibration temperature, the adjustment numbers from the table need to be multiplied by 2. The gain and offset error adjustment should then be added to the basic gain and offset errors in Table 5 to obtain the accuracy after the temperature drift.

JY-5321/5322 Additional Accuracy Adjustment = \pm (% Reading + % Range)

Nominal Range (V)	Temperature Coefficients (/ °C)	Full-Scale Temp Adjustment (uV/ °C)
0.25	0.0003	+ 0.0004 2 uV
0.5	0.0003	+ 0.0004 4 uV
1	0.0003	+ 0.0003 6 uV
2	0.0004	+ 0.0002 20 uV
5	0.0005	+ 0.0004 50 uV
10	0.0005	+ 0.0003 80 uV

JY-5323/5324 Additional Accuracy Adjustment = \pm (% Reading + % Range)

Nominal Range (V)	Temperature Coefficients (/ °C)	Full-Scale Temp Adjustment (uV/ °C)
0.5	0.0005	+ 0.0004 4 uV
1	0.0005	+ 0.0002 7 uV
5	0.0008	+ 0.0002 50 uV
10	0.0009	+ 0.0002 100 uV

Table 7 Additional Accuracy Adjustment due to Temperature Drift

1.5.4 Example of Calculating Gain and Offset Errors

Table 8 shows an example of calculating total gain and offset errors of JY-5324. When reading 2mV, the total gain error is 0.12 μ V, the offset error is 10 uV, and the total error is 10.12 uV

Calculating Gain and Offset Errors		
Nominal Range (V)		0.5
Error Calculation	Gain	Offset
Coef from Basic AccuracyTable (%)	0.005	0.010
Coef from Additional Adjustment Table (%)	0.0005	0.0004
Operating temperature outside calibration temperature range($T_{cal} \pm 1^\circ\text{C}$ typical)($^\circ\text{C}$)	2	
Total Coefficient Adjustment (%)	0.001	0.0008
Total Gain and Offset Error Coefficients (%)	0.0060	0.011
Reading(mV)	2	
Gain and Offset Errors (μV)	0.12	10
Total Error (Gain+Offset) (μV)	10.120	

Table 8 Calculating Gain and Offset Errors

1.6 Dynamic Performance

Table 9 shows JY-5321/JY-5322 Dynamic performance including AI Bandwidth, THD, SINAD, SFDR and Noise.

Nominal Range (V)	Max Sample Rate (S/s)	Resolution (μV)	Bandwidth -3dB (KHz)	THD (dB)	SINAD (dBc)	SFDR (dBc)	Noise (μVrms)
0.25	1 M	8	150	-93	68	85	17
0.5	1 M	15	220	-98	71	88	25
1	1 M	31	220	-101	76	94	33
2	1 M	61	220	-101	80	99	72
5	1 M	153	220	-91	82	92	161
10	1 M	305	220	-90	83	90	320
JY-5321 JY-5322 support 2 Bandwidth: 220 KHz and 25KHz, this table shows specification under 220 KHz							

Nominal Range (V)	Max Sample Rate (S/s)	Resolution (μV)	Bandwidth -3dB (KHz)	THD (dB)	SINAD (dBc)	SFDR (dBc)	Noise (μVrms)
0.25	1 M	8	25	-95	78	100	7
0.5	1 M	15	25	-98	82	101	10
1	1 M	31	25	-103	85	105	16
2	1 M	61	25	-103	85	103	38
5	1 M	153	25	-92	85	92	82
10	1 M	305	25	-90	84	90	162
JY-5321 JY-5322 support 2 Bandwidth: 220 KHz and 25 KHz, this table shows specification under 25 KHz							

Table 9 Dynamic Performance of JY-5321/JY-5322

Table 10 shows JY-5323/JY-5324 Dynamic performance including AI Bandwidth, THD, SINAD, SFDR and Noise.

Nominal Range (V)	Max Sample Rate (S/s)	Resolution (μV)	Bandwidth -3dB* (KHz)	THD (dB)	SINAD (dBc)	SFDR (dBc)	Noise (μVRms)
0.5	200 k	15	15	-99	82	91	12
1	200 k	31	23	-95	82	92	22
5	200 k	153	15	-93	82	94	114
10	200 k	305	23	-91	81	93	214

*JY-5323 and JY-5324 have different -3dB bandwidth at different voltage range.

Table 10 Dynamic Performance of JY-5323/JY-5324

1.6.1 AI Bandwidth

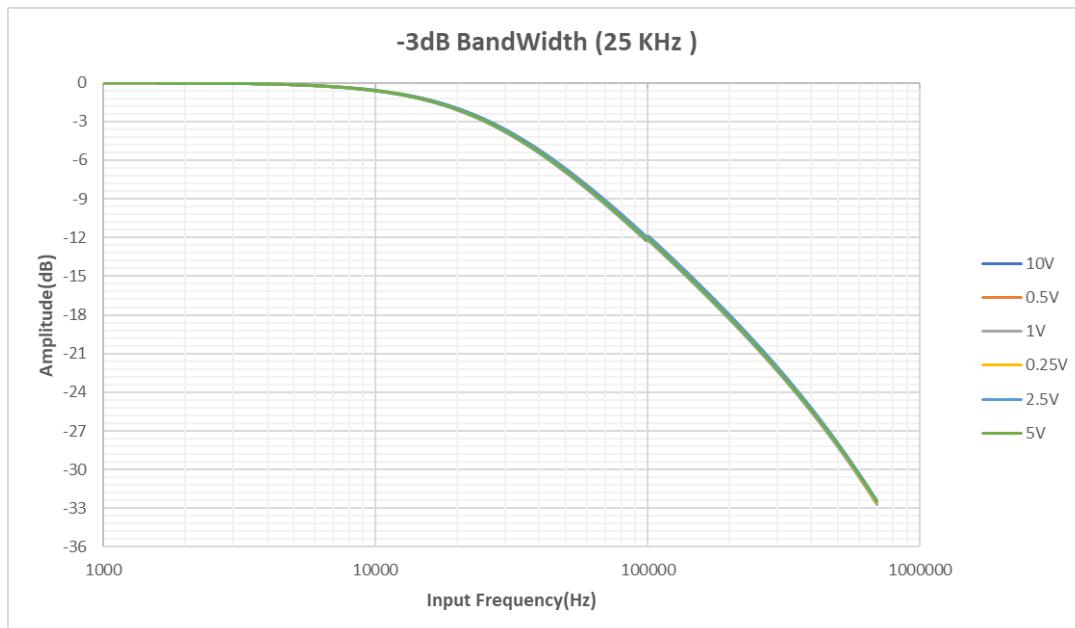


Figure 1 -3dB Bandwidth (25 KHz)

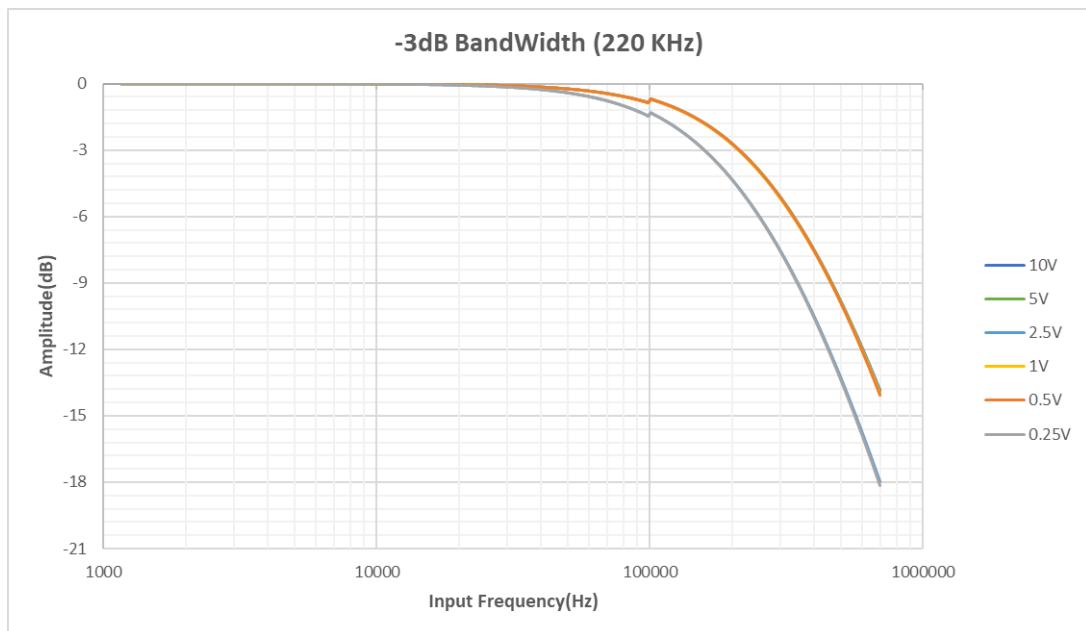


Figure 2 -3dB Bandwidth (220 KHz)

1.6.2 CMRR

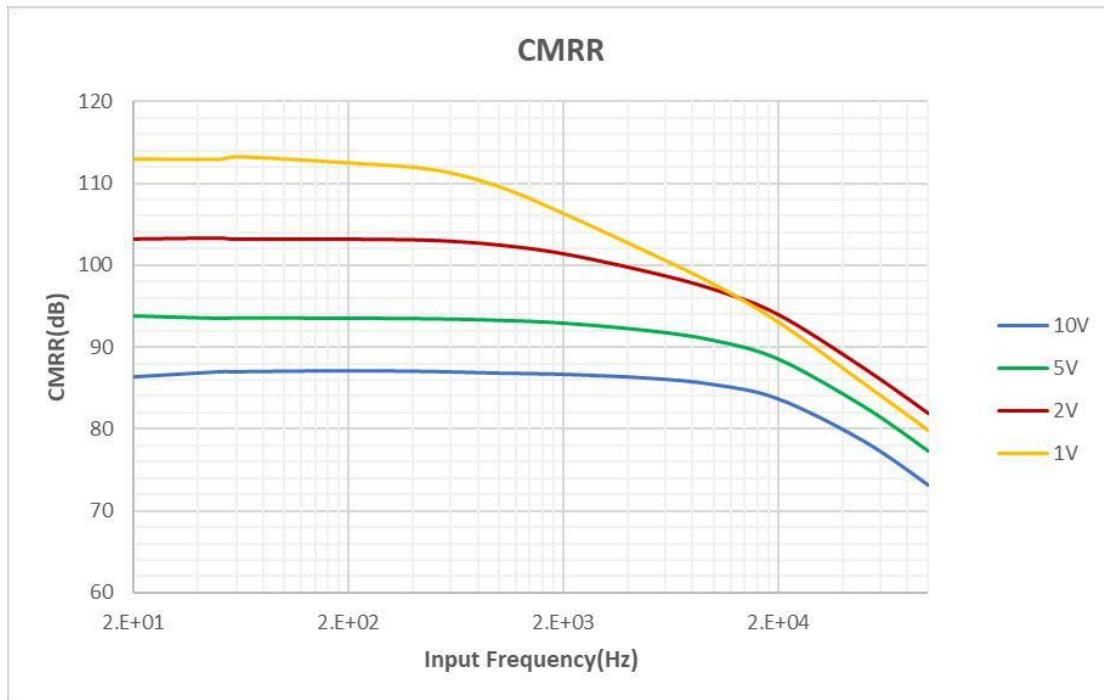


Figure 3 CMRR

Range(V)	CMRR(dB at 60 Hz)
10V	87 dB
5V	94 dB
2V	86 dB
1V	88 dB
0.5V	79 dB
0.25V	84 dB
JY5321 support 2 Bandwidth: 220 KHz and 25 KHz, this table shows specification under 25 KHz	

Range(V)	CMRR(dB at 60 Hz)
10V	88 dB
5V	92 dB
2V	88 dB
1V	91 dB
0.5V	81 dB
0.25V	88 dB
JY5321 support 2 Bandwidth: 220 KHz and 25 KHz, this table shows specification under 220 KHz	

Range(V)	CMRR(dB at 60 Hz)
10V	95 dB
5V	80 dB
1V	99 dB
0.5V	80 dB
This table shows specification of JY5320	

Table 11 CMRR

1.6.3 Crosstalk

Adjacent channel

Range(V)	Crosstalk(dB at 10 kHz)
10V	-90
5V	-90
2V	-90
1V	-90
0.5V	-90
0.25V	-90
JY5321 support 2 Bandwidth: 220 KHz and 25 KHz, this table shows specification under 25 KHz	

Range(V)	Crosstalk(dB at 10 kHz)
10V	-90
5V	-90
2V	-90
1V	-90
0.5V	-90
0.25V	-90
JY5321 support 2 Bandwidth: 220 KHz and 25 KHz, this table shows specification under 220 KHz	

Range(V)	Crosstalk(dB at 10 kHz)
10V	-90
5V	-90
1V	-90
0.5V	-90
This table shows specification of JY5320	

Table 12 Crosstalk (Adjacent channel)

Non-adjacent channel

Range(V)	Crosstalk(dB at 10 kHz)
10V	-95
5V	-95
2V	-95
1V	-95

Table 13 Crosstalk (Non-adjacent channel)

1.7 CIO

CI/CO	5321/5323	5322/5324
Number of channels	2	1
Resolution	32	
CI	edge count, period measurement, frequency measurement, pulse width measurement, two-edge interval measurement, quadrature encoder, etc.	
CO	Single, finite and continuous pulse	
Clock	100 MHz	
FIFO	4M Samples	
Input	Gate, Source, Aux	
Output	OUT	

Table 14 CIO Specifications

1.8 Connector

1.8.1 JY-5321/JY5323 provides 32 channels

Connector 1		Connector 0	
Pin	Signal Name	Pin	Signal Name
1	PFI 8/P4.0	35	PFI 9/P4.1
2	PFI 10/P5.0	36	PFI 11/P5.1
3	PFI 12/P6.0	37	PFI 13/P6.1
4	PFI 14/P7.0	38	PFI 15/P7.1
5	D_GND	39	D_GND
6	NC	40	NC
7	NC	41	NC
8	NC	42	NC
9	NC	43	NC
10	D_GND	44	D_GND
11	AI 16-	45	AI 16+
12	AI_GND	46	AI_GND
13	AI 17-	47	AI 17+
14	AI 18-	48	AI 18+
15	AI_GND	49	AI_GND
16	AI 19-	50	AI 19+
17	AI 20-	51	AI 20+
18	AI_GND	52	AI_GND
19	AI 21-	53	AI 21+
20	AI 22-	54	AI 22+
21	AI_GND	55	AI_GND
22	AI 23-	56	AI 23+
23	AI 24-	57	AI 24+
24	AI_GND	58	AI_GND
25	AI 25-	59	AI 25+
26	AI 26-	60	AI 26+
27	AI_GND	61	AI_GND
28	AI 27-	62	AI 27+
29	AI 28-	63	AI 28+
30	AI_GND	64	AI_GND
31	AI 29-	65	AI 29+
32	AI 30-	66	AI 30+
33	AI_GND	67	AI_GND
34	AI 31-	68	AI 31+

Connector 1		Connector 0	
Pin	Signal Name	Pin	Signal Name
1	CTR1_Source/A	1	CTR0_Source/A
35	CTR1_Gate/Z	35	CTR0_Gate/Z
2	CTR1_AUX/B	2	CTR0_AUX/B
3	CTR1_OUT	3	CTR0_OUT

Table 15 Pinout definition of JY-5321/JY5323

1.8.2 JY-5322/JY-5324 provides 16 channels

Connector 0			
Pin	Signal Name	Pin	Signal Name
1	PFI 0/P0.0	35	PFI 1/P0.1
2	PFI 2/P1.0	36	PFI 3/P1.1
3	PFI 4/P2.0	37	PFI 5/P2.1
4	PFI 6/P3.0	38	PFI 7/P3.1
5	D_GND	39	D_GND
6	NC	40	NC
7	NC	41	NC
8	NC	42	NC
9	NC	43	NC
10	D_GND	44	D_GND
11	AI 0-	45	AI 0+
12	AI_GND	46	AI_GND
13	AI 1-	47	AI 1+
14	AI 2-	48	AI 2+
15	AI_GND	49	AI_GND
16	AI 3-	50	AI 3+
17	AI 4-	51	AI 4+
18	AI_GND	52	AI_GND
19	AI 5-	53	AI 5+
20	AI 6-	54	AI 6+
21	AI_GND	55	AI_GND
22	AI 7-	56	AI 7+
23	AI 8-	57	AI 8+
24	AI_GND	58	AI_GND
25	AI 9-	59	AI 9+
26	AI10-	60	AI10+
27	AI_GND	61	AI_GND
28	AI 11-	62	AI 11+
29	AI 12-	63	AI 12+
30	AI_GND	64	AI_GND
31	AI 13-	65	AI 13+
32	AI 14-	66	AI 14+
33	AI_GND	67	AI_GND
34	AI 15-	68	AI 15+

Connector 0	
Pin	Signal Name
1	CTR0_Source/A
35	CTR0_Gate/Z
2	CTR0_AUX/B
3	CTR0_OUT

Table 16 Pinout definition of JY-5322/JY-5324

1.9 Front Panel connections and Pinout Definition

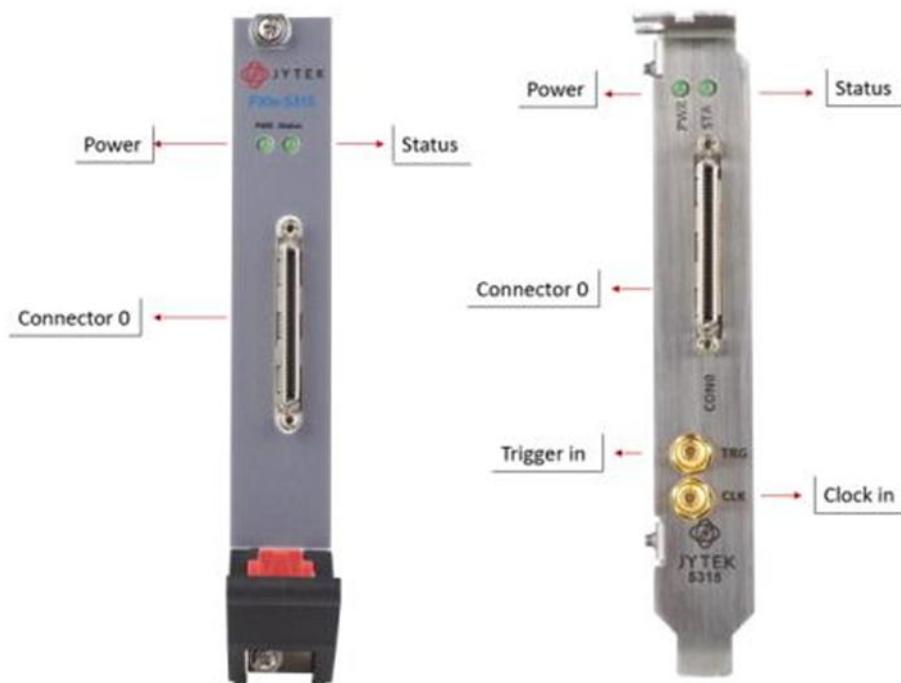


Figure 4 JY-5321/5322/5323/5324 Front Panel

1.10 Physical and Environment

Bus

PXIe standard	x4 PXI Express peripheral module Specification V1.0 compliant
Slot supported	x1 and x4 PXI Express or PXI Express hybrid slots

Size

External physical size	3 U PXIe
Weight	190 g

Operating Temperature

Operating ambient temperature range	0-55 °C
-------------------------------------	---------

Storage Environment

Ambient temperature range	-20°C to 80°C
Relative humidity range	10% to 90%, noncondensing

Power

3.3V	2.0 A
12V	0.04 A

Table 17 Physical and Environment

1.11 Synchronization Accuracy

	5321/5322	5323/5324
Synchronization Accuracy (Single module)	30ns	310ns
Synchronization Accuracy (Two modules in one chassis)	50ns	340ns

Table 18 Synchronization Accuracy

2 Table of Contents

Specs and Manual Version: V1.0.4

Revision Date: Sep 11,2025

1 USB/PCIe/PXIe-5321,5322,5323,5324 Specification	1
1.1 Main Features	1
1.2 Analog Input Specifications.....	2
1.3 Digital IO Specifications.....	3
1.4 PFI Specifications	3
1.5 DC Accuracy.....	3
1.5.1 Basic JY-5321/5322/5323/5324 DC Accuracy	3
1.5.2 System Noise	4
1.5.3 Temperature Drift Adjustment.....	4
1.5.4 Example of Calculating Gain and Offset Errors	5
1.6 Dynamic Performance.....	6
1.6.1 AI Bandwidth.....	7
1.6.2 CMRR.....	8
1.6.3 Crosstalk.....	9
1.7 CIO	11
1.8 Connector.....	12
1.8.1 JY-5321/JY5323 provides 32 channels	12
1.8.2 JY-5322/JY-5324 provides 16 channels	13
1.9 Front Panel connections and Pinout Definition	14
1.10 Physical and Environment.....	14
1.11 Synchronization Accuracy	15
2 Table of Contents	16

3 Software	23
3.1 System Requirements	23
3.2 System Software.....	23
3.3 C# Programming Language	24
3.4 C ++ Programming Language	24
3.5 JY-5321/5322/5323/5324 Hardware Driver.....	24
3.6 Install the SeeSharpTools from JYTEK	24
3.7 Running C# Programs in Linux	25
4 Order Information	26
5 JYPEDIA.....	27
6 Additional Hardware Information	27
6.1 DC Accuracy.....	27
6.2 Dynamic Performance.....	27
7 Additional Software Information	27
7.1 System Requirements	27
7.2 System Software.....	28
7.3 C# Programming Language	28
7.4 C ++ Programming Language	28
7.5 Python	29
8 Operating JY-5321/5322/5323/5324 Module.....	29
8.1 Quick Start.....	29
8.2 Data Acquisition Methods.....	29
8.2.1 Continuous Acquisition	30
8.2.2 Finite Acquisition	32
8.2.3 Single Acquisition	32
8.2.4 Record Acquisition	32
8.3 Analog Input Terminal Type	33
8.4 Trigger Source	34

8.4.1 Immediate trigger	34
8.4.2 Software Trigger.....	35
8.4.3 External Analog Trigger	36
8.4.4 External Digital Trigger	41
8.5 Trigger Mode.....	42
8.5.1 Start Trigger.....	42
8.5.2 Reference Trigger	43
8.5.3 ReTrigger	44
8.5.4 Sample Clock.....	47
8.6 Digital I/O Operations	48
8.6.1 Static DI/DO.....	48
8.7 Counter Measurement Operations.....	49
8.7.1 Edge Counting	50
8.7.2 Pulse Measurement	55
8.7.3 Frequency Measurement.....	59
8.7.4 Period Measurement	62
8.7.5 Two-Edge Separation	64
8.7.6 Quadrature Encoder.....	68
8.7.7 Two-Pulse Encoder.....	72
8.8 Counter Generation Operations	76
8.9 Multi-Devices Synchronization	82
8.10 DIP Switch in PCIe-5320	83
9 Calibration	84
10 Appendix	84
10.1 Typical Measurement Error.....	84
10.2 System Noise	85
10.3 Temperature Drift	85
11 About JYTEK	85

11.1 JYTEK China	85
11.2 JYTEK Software Platform	86
11.3 JYTEK Warranty and Support Services	86
12 Statement.....	87

Table 1 Analog Input Specifications	2
Table 2 DIO Specifications.....	3
Table 3 PFI Specifications	3
Table 4 AI Accuracy of JY-5321/JY-5322	4
Table 5 AI Accuracy of JY-5323/JY-5324	4
Table 6 AI Accuracy of JY-5323/JY-5324	4
Table 7 Additional Accuracy Adjustment due to Temperature Drift.....	5
Table 8 Calculating Gain and Offset Errors.....	6
Table 9 Dynamic Performance of JY-5321/JY-5322	6
Table 10 Dynamic Performance of JY-5323/JY-5324	7
Table 11 CMRR	9
Table 12 Crosstalk (Adjacent channel)	10
Table 13 Crosstalk (Non-adjacent channel)	11
Table 14 CIO Specifications	11
Table 15 Pinout definition of JY-5321/JY5323	13
Table 16 Pinout definition of JY-5322/JY-5324.....	13
Table 17 Physical and Environment.....	15
Table 18 Synchronization Accuracy.....	23
Table 19 Supported Linux Versions	28
Table 20 SSI Connector Pin Assignment for PCIe-5320.....	83
Table 21 Relationship between switch position and slot number.....	84

Figure 1 -3dB Bandwidth (25 KHz)	7
Figure 2 -3dB Bandwidth (220 KHz)	8
Figure 3 CMRR.....	8
Figure 4 JY-5321/5322/5323/5324 Front Panel	14
Figure 5 AI Simultaneous Mode Acquisition.....	30
Figure 6 Set other numbers	31
Figure 7 AI Continuous Data	31
Figure 8 Streaming	32
Figure 9 Differential Mode for Grounding Signal.....	33
Figure 10 Differential Mode for Floating Signal	33
Figure 11 Immediate trigger Paraments	34
Figure 12 Software trigger Paraments	35
Figure 13 Software trigger Acquisition	36
Figure 14 Rising Slope Trigger	37
Figure 15 Falling Slope Trigger	37
Figure 16 Hysteresis with Rising Slope Trigger.....	38
Figure 17 Hysteresis with Falling Slope Trigger.....	38
Figure 18 Entering Window Trigger	39
Figure 19 Leaving Window Trigger.....	39
Figure 20 Analog Trigger Paraments	40
Figure 21 Waiting For Trigger	40
Figure 22 Analog Trigger Acquisition	41
Figure 23 External Digital Trigger	41
Figure 24 Digital Trigger Acquisition	42
Figure 25 Start Trigger.....	43
Figure 26 Reference Trigger	44
Figure 27 Re-Trigger	44
Figure 28 Retrigger Paraments.....	45

Figure 29 Retrigger In Start Trigger Mode	46
Figure 30 Retrigger In Reference Trigger Mode	46
Figure 31 Complete Retrigger Count	47
Figure 32 Single Digital Output	49
Figure 33 Single Digital Input	49
Figure 34 Counter Input Diagram (TBD).....	50
Figure 35 Simple Edge Counting in Single Mode	51
Figure 36 Buffered Edge Counting with Explicit Sample Clock	51
Figure 37 Simple Edge Counting with Implicit Sample Clock.....	52
Figure 38 Pause Trigger	52
Figure 39 Count Direction	53
Figure 40 EdgeCounting For Single Mode	54
Figure 41 EdgeCounting For Finite Mode	55
Figure 42 Pulse Measurement in Single Mode	56
Figure 43 Pulse Measurement with Explicit Sample Clock	56
Figure 44 Pulse Measurement with Implicit Sample Clock.....	57
Figure 45 Pulse Measure Value For Single Mode.....	58
Figure 46 Pulse Measure Values For Continuous Mode	59
Figure 47 Frequency Measurement with Explicit Sample Clock.....	60
Figure 48 Frequency Measure For Continuous Mode	62
Figure 49 Period Measure For Single Mode.....	63
Figure 50 Period Measure For Continuous Mode.....	63
Figure 51 Two-Edge Separation in Single Mode	64
Figure 52 Two-Edge Separation with Explicit Sample Clock	65
Figure 53 Two-Edge Separation with Implicit Sample Clock.....	66
Figure 54 Two-EdgeSeparation Measure For Single Mode.....	67
Figure 55 Two-EdgeSeparation Measure For Finite Mode	68
Figure 56 Quadrature Endcoder x1 Mode	68

Figure 57 Quadrature Encoder x2 Mode	69
Figure 58 Quadrature Encoder x4 mode.....	69
Figure 59 Quadrature Encoder x4 with Explicit Sample Clock	70
Figure 60 Quadrature Encoder x4 with Implicit Sample Clock	70
Figure 61 QuadEncoder For Single Mode	71
Figure 62 QuadEncoder For Continuous Mode	72
Figure 63 Two-Pulse Encoder in Single Mode.....	73
Figure 64 Two-Pulse Encoder with Explicit Sample Clock.....	73
Figure 65 Two-Pulse Encoder with Implicit Sample Clock	74
Figure 66 Two-PulseEncoder For Single Mode	75
Figure 67 Two-PulseEncoder For Finite Mode	76
Figure 68 Two-PulseEncoder For Continuous Mode.....	76
Figure 69 Pulse Output in Single Mode	77
Figure 70 Pulse Output in Single Mode with Dynamic Update	77
Figure 71 Single Pulse Generation	78
Figure 72 AI Acquisition Single Pulse	78
Figure 73 Buffered Pulse Sequence Generation	79
Figure 74 Finite Pulses Generation	80
Figure 75 AI Acquisition Finite Pulse.....	81
Figure 76 Continuous Pulse Generation	81
Figure 77 AI Acquisition Continuous Pulse	82
Figure 78 SSI Connector in PCIe-5320.....	83
Figure 79 DIP Switch in PCIe-5310	83

3 Software

3.1 System Requirements

JY-5321/5322/5323/5324 modules can be used in a Windows or a Linux operating system.

Microsoft Windows: Windows 7 32/64 bit, Windows 10 32/64 bit. We highly recommend the user to use Windows 10 whenever possible.

Linux Kernel Versions: There are many Linux versions. It is not possible JYTEK can support and test our devices under all different Linux versions. JYTEK will at the best support the following Linux versions.

Linux Version
Ubuntu LTS
16.04: 4.4.0-21-generic(desktop/server)
16.04.6: 4.15.0-45-generic(desktop) 4.4.0-142-generic(server)
18.04: 4.15.0-20-generic(desktop) 4.15.0-91-generic(server)
18.04.4: 5.3.0-28-generic (desktop) 4.15.0-91-generic(server)
Localized Chinese Version
中标麒麟桌面操作系统软件 (兆芯版) V7.0 (Build61) : 3.10.0-862.9.1.nd7.zx.18.x86_64
中标麒麟高级服务器操作系统软件V7.0U6: 3.10.0-957.el7.x86_64

Table 19 Supported Linux Versions

3.2 System Software

When using JY-5321/5322/5323/5324 in the Window environment, you need to install the following software from Microsoft:

Visual Studio Version 2015 or above,

.NET version is 4.0 or above.

.NET is coming with Windows 10. For Windows 7, please check .NET version and upgrade to 4.0 or later version.

Given the resources limitation, JYTEK only tested JY-5321/5322/5323/5324 modules with .NET 4.0 with Visual Studio 2015. JYTEK relies on Microsoft to maintain the compatibility for the newer versions.

3.3 C# Programming Language

All JYTEK default programming language is Microsoft C#. This is Microsoft recommended programming language in Visual Studio and is particularly suitable for the test and measurement applications. C# is also a cross platform programming language.

3.4 C++ Programming Language

JYTEK provides QT C++ drivers for C++ programmers. We also provide many QT C++ examples. However, due to our limited resources, we do not support C++ based applications.

3.5 JY-5321/5322/5323/5324 Hardware Driver

After installing the required application development environment as described above, you need to install the JY-5321/5322/5323/5324 hardware driver.

JYTEK hardware driver has two parts: the shared common driver kernel software (FirmDrive) and the hardware specific driver software.

Common Driver Kernel Software (FirmDrive): FirmDrive is the JYTEK's kernel software for all hardware products of JYTEK instruments. You need to install this kernel software before using any other JYTEK hardware products. FirmDrive only needs to be installed once. After that, you can install the hardware specific driver.

Hardware Specific Driver: Each JYTEK hardware has a C# hardware specific driver. This driver provides rich and easy-to-use C# interfaces for users to operate various JY-5321/5322/5323/5324 function. JYTEK has standardized the ways JYTEK and other vendor's DAQ cards are used by providing a consistent user interface, using the methods, properties and enumerations in the object-oriented programming environment. Once you get yourself familiar with how one JYTEK DAQ card works, you should be able to know how to use all other DAQ hardware using the same methods.

3.6 Install the SeeSharpTools from JYTEK

To efficiently and effectively use JY-5321/5322/5323/5324 boards, you need to install a set of free C# utilities from JYTEK SeeSharp Test and Measurement platform. The SeeSharp platform offers rich user interface functions you will find convenient in

developing your applications. They are also needed to run the examples come with JY-5321/5322/5323/5324 hardware. Please register and down load the latest SeeSharpTools from our website www.jytek.com.

3.7 Running C# Programs in Linux

Most C# written programs in Windows can be run by Microsoft Mono development system in a Linux environment. You would develop your C# applications in Windows using Visual Studio. Once it is done, run this application in the Mono environment. This is JYTEK recommended way to run your C# programs in a Linux environment.

If you want to use your own Linux development system other than Mono, you can do it using our Linux driver. However, JYTEK does not have the capability to support the Linux applications. JYTEK completely relies upon Microsoft to maintain the cross-platform compatibility between Windows and Linux using Mono.

4 Order Information

- PXIe-5321 (PN: JY8149280-01)
32-ch, 16-bit, 1MS/s/ch , 16 DIO, PXIe Simultaneous sampling Multifunction I/O Module
- PXIe-5322 (PN: JY6410588-01)
16-ch, 16-bit, 1MS/s/ch , 8 DIO, PXIe Simultaneous sampling Multifunction I/O Module
- PXIe-5323 (PN: JY1816101-01)
32-ch, 16-bit, 200kS/s/ch , 16 DIO, PXIe Simultaneous sampling Multifunction I/O Module
- PXIe-5324 (PN: JY8920241-01)
16-ch, 16-bit, 200kS/s/ch , 8 DIO, PXIe Simultaneous sampling Multifunction I/O Module
- PCIe-5321 (PN: JY7961198-01)
32-ch, 16-bit, 1MS/s/ch , 16 DIO, PCIe Simultaneous sampling Multifunction I/O Module
- PCIe-5322 (PN: JY2511025-01)
16-ch, 16-bit, 1MS/s/ch , 8 DIO, PCIe Simultaneous sampling Multifunction I/O Module
- PCIe-5323 (PN: JY7037274-01)
32-ch, 16-bit, 200kS/s/ch , 16 DIO, PCIe Simultaneous sampling Multifunction I/O Module
- PCIe-5324 (PN: JY3315663-01)
16-ch, 16-bit, 200kS/s/ch , 8 DIO, PCIe Simultaneous sampling Multifunction I/O Module
- USB-5321 (PN: JY9188254-01)
32-ch, 16-bit, 1MS/s/ch , 16 DIO, USB Simultaneous sampling Multifunction I/O Module
- USB-5322 (PN: JY1290213-01)
16-ch, 16-bit, 1MS/s/ch , 8 DIO, USB Simultaneous sampling Multifunction I/O Module
- USB-5323 (PN: JY1743328-01)
32-ch, 16-bit, 200kS/s/ch , 16 DIO, USB Simultaneous sampling Multifunction I/O Module
- USB-5324 (PN: JY9890308-01)
16-ch, 16-bit, 200kS/s/ch , 8 DIO, USB Simultaneous sampling Multifunction I/O Module

5 JYPEDIA

JYPEDIA is an excel file. It contains JYTEK product information, pricing, inventory information, drivers, software, technical support, knowledge base etc. You can register and download a JYPEDIA excel file from our web www.jytek.com. JYTEK highly recommends you use this file to obtain information from JYTEK.

6 Additional Hardware Information

6.1 DC Accuracy

DC voltage measurement refers to the measurement of a slowly changing voltage. The accuracy of the DC measurement is affected by gain error and offset error. An instrument's DC accuracy is defined by the gain and offset errors as follows:

$$\text{Accuracy} = \text{Gain Error} (\% \text{ of reading}) + \text{Offset Error} (\% \text{ of range})$$

Equation 2 Gain and Offset Errors

It should be noted when the reading is close to zero, the gain error is very small and negligible, the offset error is dominant; when the reading is getting close to the full range, the gain error becomes more significant.

The AI DC Accuracy of JY-5321/5322/5323/5324 is shown in and Table 5.

6.2 Dynamic Performance

JY-5321/5322/5323/5324 offers excellent dynamic performances as shown in Table 9 and Table 10, where THD stands for the total harmonic distortion; SINAD stands for Signal-to-Noise And Distortion; SFDR stands for Spurious-Free Dynamic Range.

7 Additional Software Information

7.1 System Requirements

JY-5321/5322/5323/5324 series modules can be used in a Windows or a Linux operating system.

Microsoft Windows: Windows 7 32/64 bit, Windows 10 32/64 bit. We highly recommend the user to use Windows 10 whenever possible.

Linux Kernel Versions: There are many Linux versions. It is not possible JYTEK can support and test our devices under all different Linux versions. JYTEK will at the best

support the following Linux versions.

Linux Version
Ubuntu LTS
16.04: 4.4.0-21-generic(desktop/server)
16.04.6: 4.15.0-45-generic(desktop) 4.4.0-142-generic(server)
18.04: 4.15.0-20-generic(desktop) 4.15.0-91-generic(server)
18.04.4: 5.3.0-28-generic (desktop) 4.15.0-91-generic(server)
Localized Chinese Version
中标麒麟桌面操作系统软件 (兆芯版) V7.0 (Build61) : 3.10.0-862.9.1.nd7.zx.18.x86_64
中标麒麟高级服务器操作系统软件V7.0U6: 3.10.0-957.el7.x86_64

Table 20 Supported Linux Versions

7.2 System Software

When using JY-5321/5322/5323/5324 series in the Window environment, you need to install the following software from Microsoft:

Visual Studio Version 2015 or above,

.NET version is 4.0 or above.

.NET is coming with Windows 10. For Windows 7, please check .NET version and upgrade to 4.0 or later version.

Given the resources limitation, JYTEK only tested JY9817 modules with .NET 4.0 with Visual Studio 2015. JYTEK relies on Microsoft to maintain the compatibility for the newer versions.

7.3 C# Programming Language

All JYTEK default programming language is Microsoft C#. This is Microsoft recommended programming language in Visual Studio and is particularly suitable for the test and measurement applications. C# is also a cross platform programming language.

7.4 C ++ Programming Language

JYTEK provides QT C++ drivers for C++ programmers. We also provide many QT C++ examples. However, due to our limited resources, we do not support C++ based applications.

7.5 Python

JYTEK provides and supports a native python driver for JY-5321/5322/5323/5324 cards. There are many different versions of Python. JYTEK has only tested in CPython version 3.5. There is no guarantee that JYTEK python drivers will work correctly with other versions of Python. If you want to be our partner to support different Python platforms, please contact us.

8 Operating JY-5321/5322/5323/5324 Module

This chapter provides the operation guides for JY-5321/5322/5323/5324, including AI and programmable I/O interface, etc.

JYTEK provides extensive examples, on-line help and documentation to assist you to operate the JY-5321/5322/5323/5324 board. JYTEK strongly recommends you go through these examples before writing his own application. In many cases, an example can also be a good starting point for a user application.

8.1 Quick Start

After you have installed the driver software and the SeeSharpTools, you are ready to use Visual Studio and our C# measurement and control platform tools (SeeSharp Platform) to operate the JY-5321/5322/5323/5324 board.

If you are already familiar with Microsoft Visual Studio and C# programming, the quickest way to use JY-5321/5322/5323/5324 cards is to go through our extensive examples. We provide source code of our examples. In many cases, you can modify the source code and start to write your applications.

8.2 Data Acquisition Methods

JY-5321/5322/5323/5324 uses a simultaneous method to acquire analog data, meaning there is sixteen ADC chip on the device and each input channel uses individual ADC to capture data. In the simultaneous acquisition mode, you need to configure AI channels and set up some parameters through JY-5321/5322/5323/5324 driver software. The most important parameters are *Data Acquisition mode*, *Sample Rate*, *SamplesToAcquire*, *Channel*, and *Analog Input Terminal Type*.

AI Acquisition mode (AIMode): JY-5321/5322/5323/5324 provides 4 acquisition modes, **Continuous, Finite, Single Point, Record** described in details in Section 8.2.1 to 8.2.4.

SampleRate: How fast multi-channel data are collected per second per channel.

Example, if your sample rate is 1000Hz, you acquire two channels of data, you will have 2000 points/second.

SamplesToAcquire: This parameter behaves differently in the different AI acquisition modes. In the continuous acquisition mode, *SamplesToAcquire* is the buffer size used in the AI acquisition task; in the finite acquisition mode, it is to specify the number of samples to capture.

Channels: how many channels do you want to collect data. You can set up the channels in different orders, for instance 2,3,1,0. The acquired data will be arranged in the way you specified. In this particular case, *Channel_Count* is 4.

Once the Sample Rate is set, the actual hardware sampling rate is achieved by internal clock or external clock source. The sample clock source is also configured by software. Data acquisition sequence is shown in Figure 5.

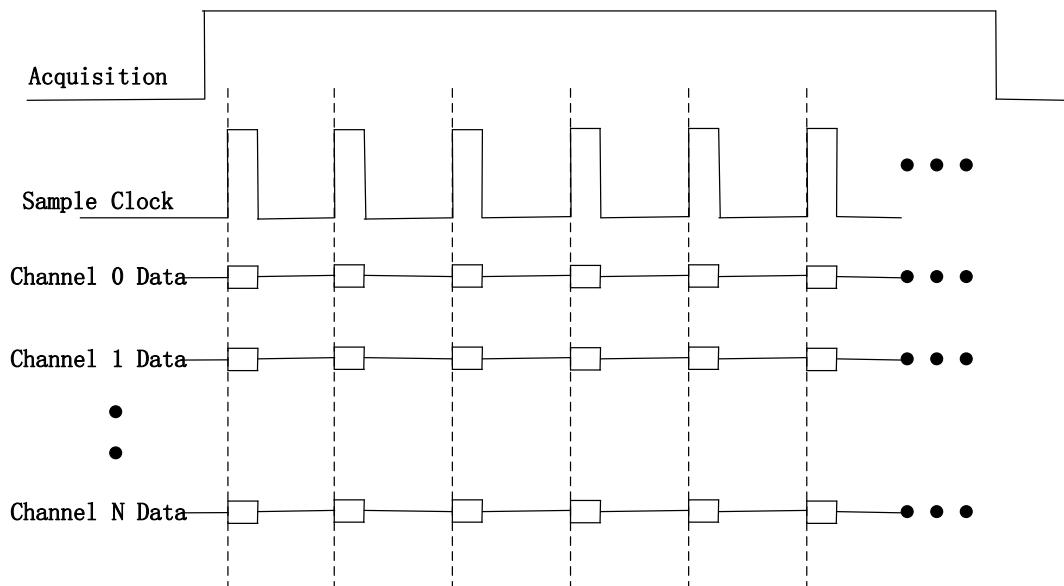


Figure 5 AI Simultaneous Mode Acquisition

8.2.1 Continuous Acquisition

An AI acquisition task will acquire the data continuously until the task is stopped when you start the task in the Continuous acquisition mode. You will need to configure the appropriate buffer size by the parameter, *SamplesToAcquire*, to achieve the best performance of capture and display.

You use the sample program **Analog Input --> Winform AI Continuous** to learn more about Continuous Acquisition

Learn by Example 8.2.1

You use the sample program **Analog Input --> Winform AI Continuous** to learn more

about Continuous Acquisition.

- Connect the one signal source's positive outputs to JY-5323 AI Ch2 (AI2+, Pin #48), one negative terminals to AI Ch2 negative (AI2-, Pin#14) .
- Set other numbers as shown and click start.

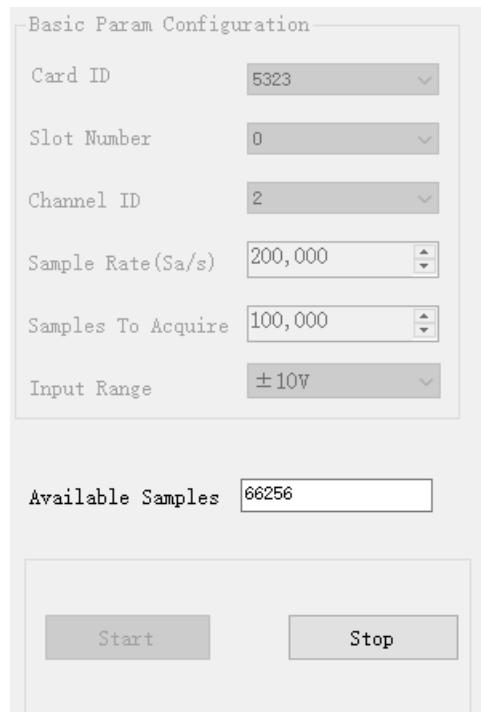


Figure 6 Set other numbers

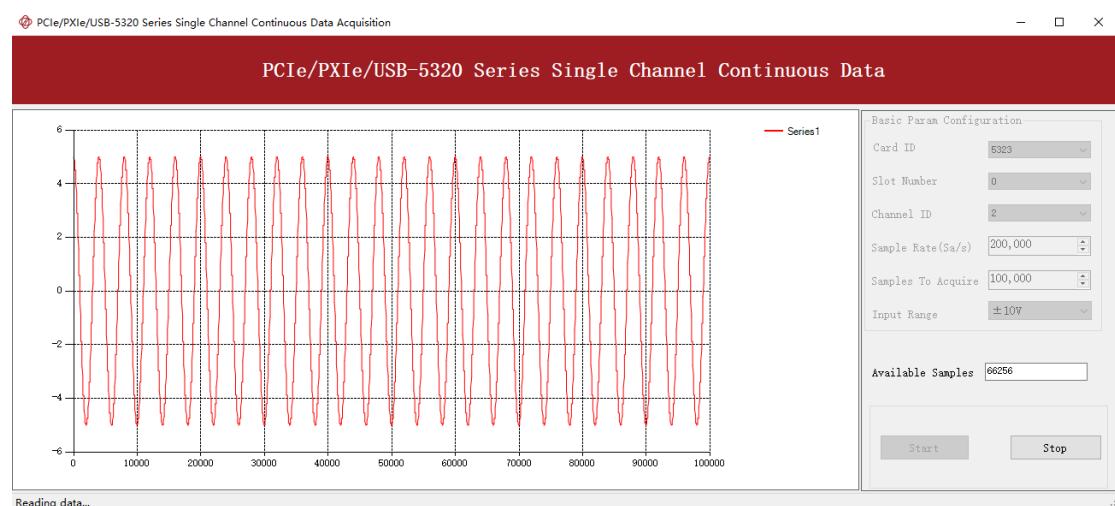


Figure 7 AI Continuous Data

8.2.2 Finite Acquisition

In the Finite Acquisition mode, an AI acquisition task will capture specific number of samples by the parameter, *SamplesToAcquire*.

You use the sample program **Analog Input --> Winform AI Finite** to learn more about Finite Acquisition.

8.2.3 Single Acquisition

In the Single Acquisition mode, it is to capture a single sample for each acquisition.

8.2.4 Record Acquisition

AI Task will continuously capture the data and then save them to a storage disk. During the capturing process, user can preview the captured data randomly when the capturing process is available. The mode is particularly useful for high-speed acquisition and recording applications.

You can use sample program: **Record -->Winform AI Finite Streaming** to learn more about the single point Acquisition.

Learn by Example 8.2.4

- Connect two signal source's positive outputs to JY-5323 AI Ch1(AI1+,Pin#47) and AI Ch2(AI2+,Pin#48),two negative terminals to AI Ch1 negative (AI1-,Pin#13),and AI Ch2 negative (AI2-mPin#14) .
- Set two sinewave signals(f=50 Hz,Vpp=8 V;f=50 Hz,vpp=5 V).
- Click **Strat** to run the task.

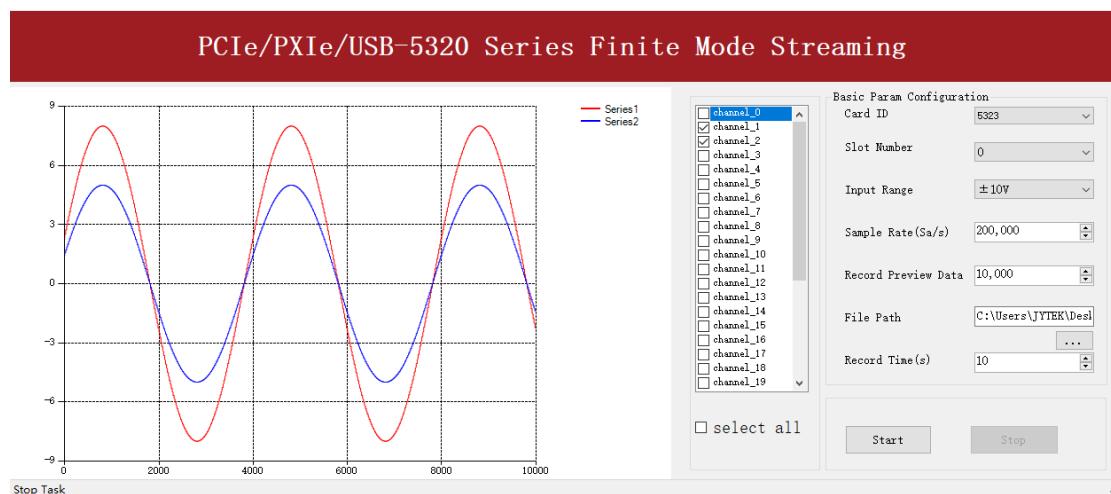


Figure 8 Streaming

8.3 Analog Input Terminal Type

The JY-5321/5322/5323/5324 only provides one analog input terminal type: Differential (DIFF). In the differential mode you can connect ground-referenced signal to the JY-5321/5322/5323/5324. Connect positive side of signal to AI+ terminal, negative side of signal to AI- terminal as shown in Figure 9. Please see the provided software examples for more information.

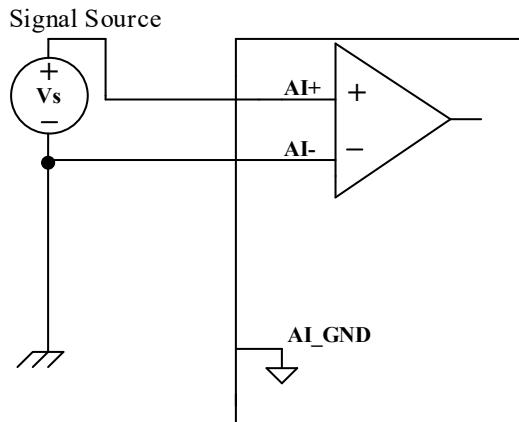


Figure 9 Differential Mode for Grounding Signal

If the measured signal is floating, it is quite often that the common mode voltage will appear. To reduce this effect on the measurement accuracy, a resistor can be added as shown in Figure 10. The value of this resistor depends on the impedance of the signal source. As a rule of thumb, R should be 1000 times of the signal source output impedance, roughly $10\text{ K}\Omega$ to $100\text{ K}\Omega$. At this level, R has very little impact on the measurement.

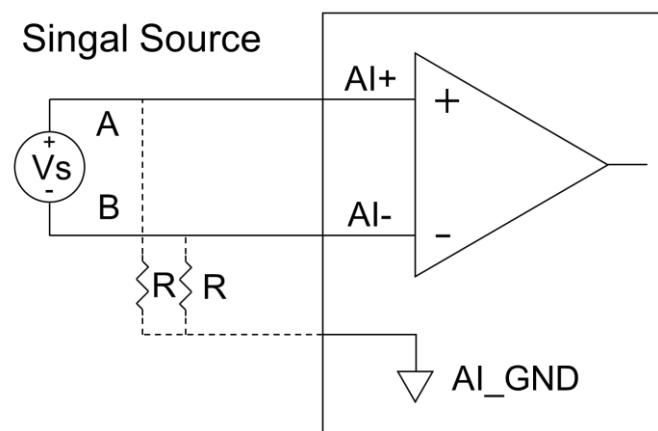


Figure 10 Differential Mode for Floating Signal

8.4 Trigger Source

There are 4 trigger types:

- Immediate trigger
- Software trigger
- analog trigger
- digital trigger

The trigger type is a property and set by driver software. Please find the provided software examples for more information.

8.4.1 Immediate trigger

The module will acquire the signal immediately after executing the AI Task without any trigger condition setting by default.

Learn by Example 8.4.1

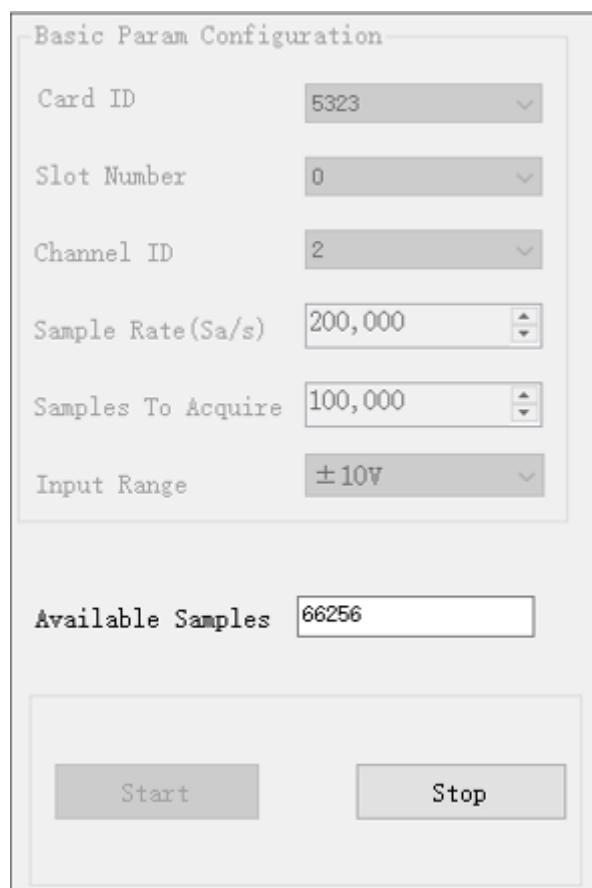


Figure 11 Immediate trigger Params

- With Immediate trigger you can click **Start** to generate the task instead of sending a trigger signal.

8.4.2 Software Trigger

The analog acquisition task will wait on the software trigger signal in the software trigger mode until receiving a software trigger signal from driver, then AI task will start to acquire the data

Learn by Example 8.4.2

- Connect the signal source's positive outputs to JY-5323 AI Ch1(AI1+,Pin#47),the negative terminals to AI Ch1 negative (AI1-,Pin#13).
- Set the sinewave signal(f=5 Hz,Vpp=5 V).
- Click **Strat** to run the task.

Figure 12 Software trigger Params

- Data will not be acquired until there is a positive signal from Software Trigger when **Send Soft Trigger** is clicked.
- After sending the trigger signal, the result will be like this:

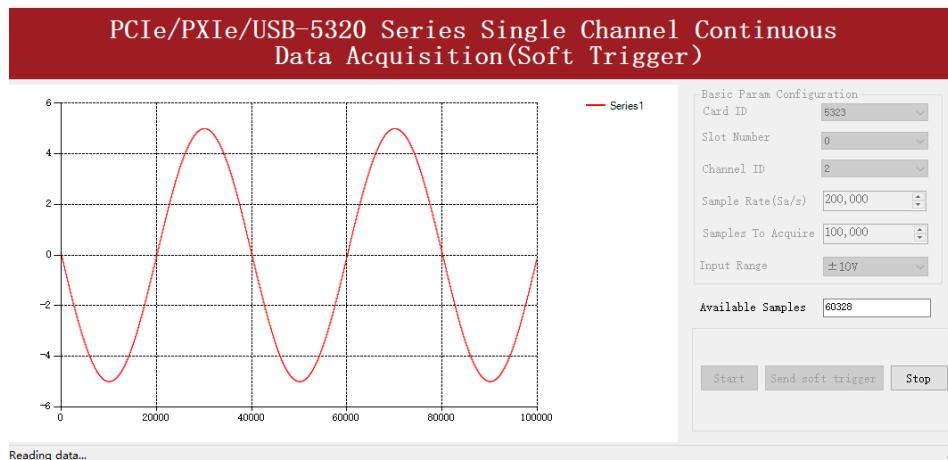


Figure 13 Software trigger Acquisition

8.4.3 External Analog Trigger

User can assign one of measurement channels as the analog trigger source. This module provides three kinds of analog trigger: Edge comparator, hysteresis comparator and window comparator. User can select the different analog trigger comparator by setting the parameter "comparator".

Analog trigger threshold can be set arbitrarily in the effective range of the selected channel. When setting the threshold, pay attention to the physical unit currently in use.

Edge comparator

In the Edge comparator, there are two trigger conditions. One is measured value above the specified threshold which is called "Rising Slope Trigger". Another is measured value below the specified threshold which is called "Falling Slope Trigger".

"Rising Slope Trigger": The Edge comparator will output high when the signal go above the threshold. And it will change to low when the signal goes below the threshold as shown in Figure 14.

"Falling Slope Trigger": The Edge comparator will output high when the signal go below the threshold. And it will change to low when the signal goes above the threshold as shown in Figure 15.

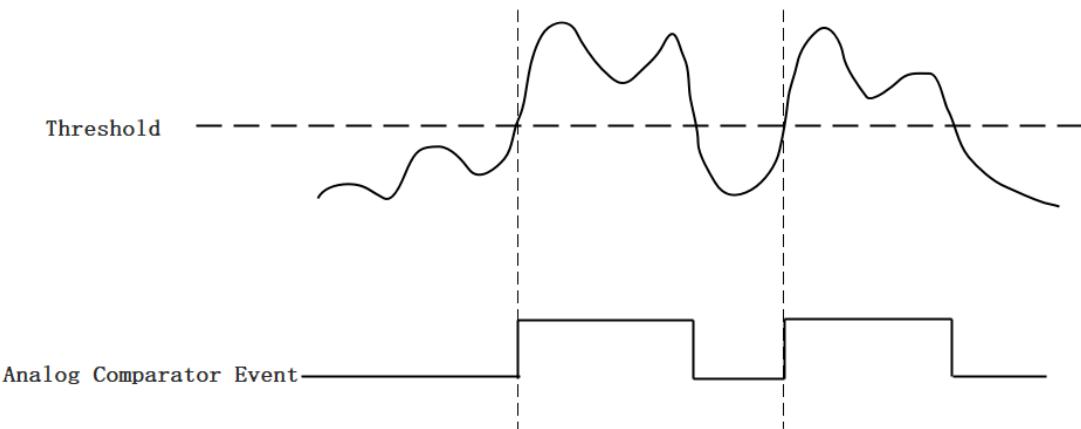


Figure 14 Rising Slope Trigger

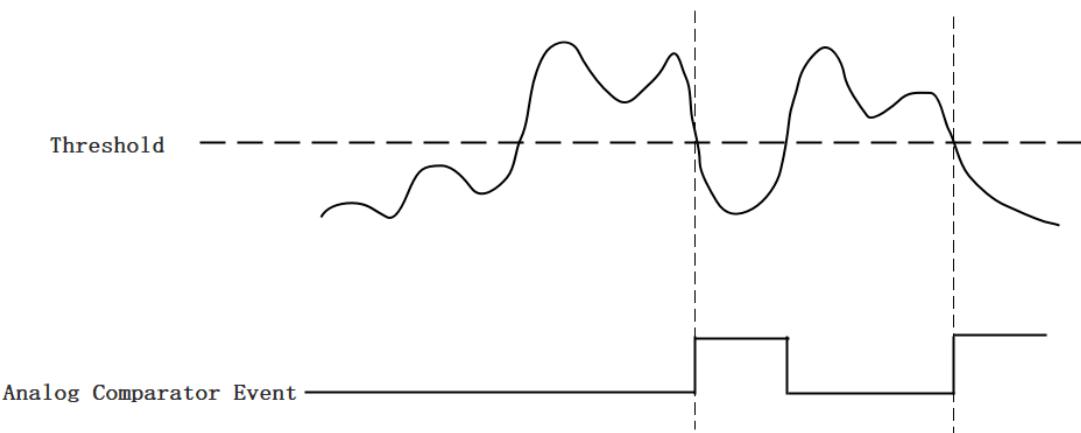


Figure 15 Falling Slope Trigger

Hysteresis comparator

The hysteresis comparator is designed for preventing spurious triggering. User can set hysteresis region by setting high threshold and low threshold. There are two trigger conditions. One is signal passing the hysteresis region from low threshold to high threshold which is called "Hysteresis with Rising Slope Trigger". Another is signal passing the hysteresis region from high threshold to low threshold which is called "Hysteresis with Falling Slope Trigger".

"Hysteresis with Rising Slope Trigger": The Hysteresis comparator will output high when the signal must first be below the low threshold, then go above the high threshold. It will change to low when the signal goes below the low threshold as shown in Figure 16.

"Hysteresis with Falling Slope Trigger": The Hysteresis comparator will output high when the signal must first be above the high threshold, then go below the low

threshold. It will change to low when the signal goes above the high threshold as shown in Figure 17.

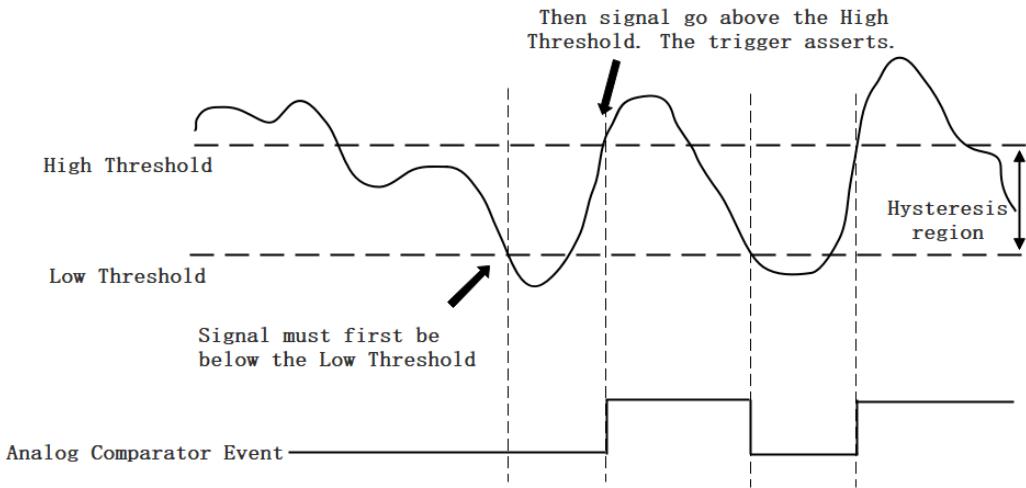


Figure 16 Hysteresis with Rising Slope Trigger

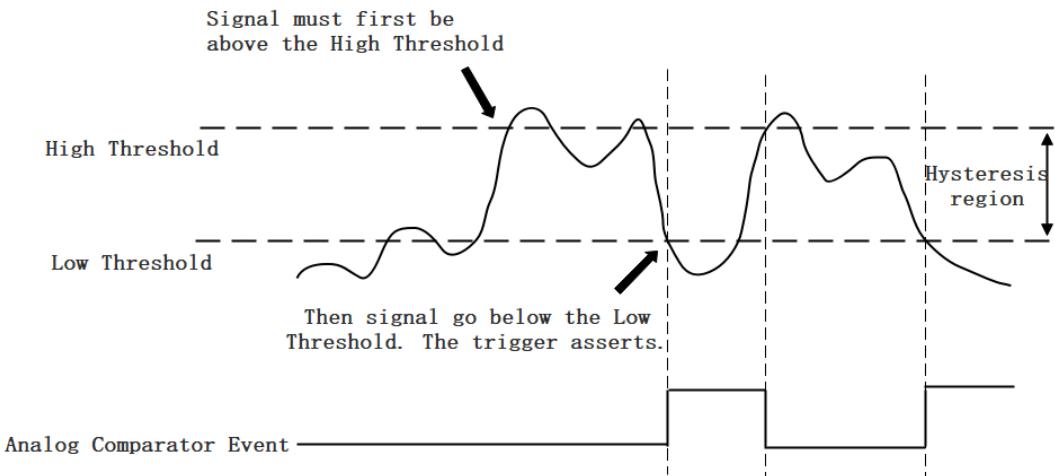


Figure 17 Hysteresis with Falling Slope Trigger

Window comparator

The window comparator is designed to acquire signal from interesting window by setting High Threshold and Low Threshold. There are two trigger conditions. One is acquired the signal inside of the window which is called "Entering Window Trigger". Another is acquired the signal outside of the window which is called "Leaving Window Trigger".

"Entering Window Trigger": The window comparator will output high when the signal enters the window defined by the Low Threshold and High Threshold. And it will output low when the signal leaves the window as shown in Figure 18.

"Leaving Window Trigger": The window comparator will output high when the signal leaves the window defined by the Low Threshold and High Threshold. And it will output low when the signal enters the window as shown in Figure 19.

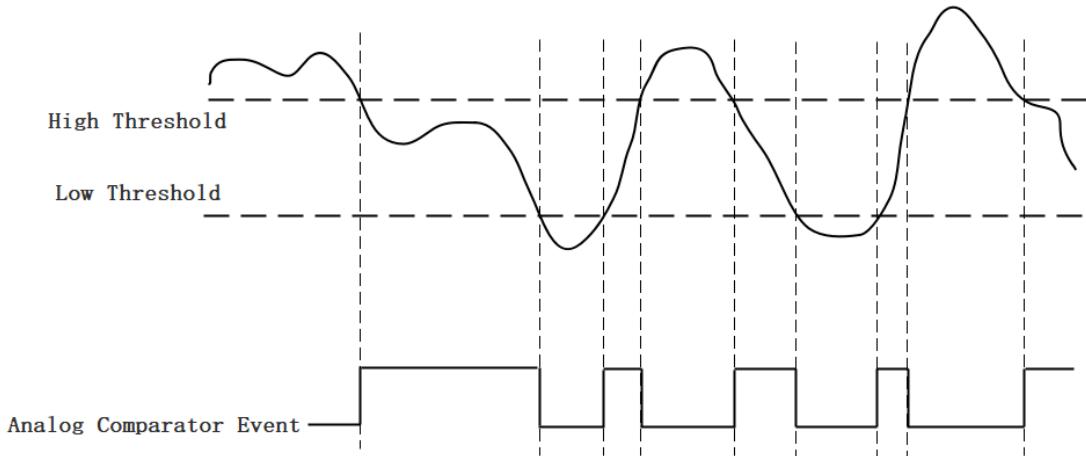


Figure 18 Entering Window Trigger

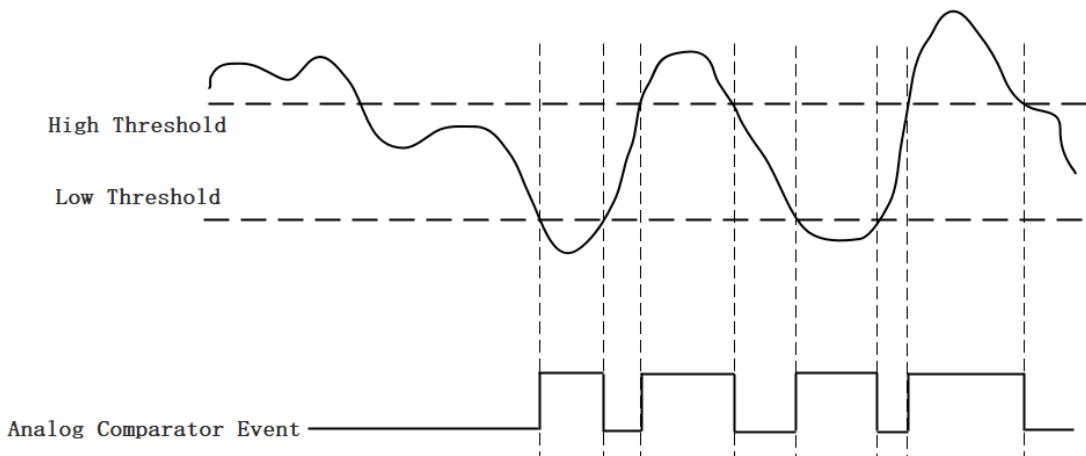


Figure 19 Leaving Window Trigger

Learn by Example 8.4.3

- Connect the signal source's positive outputs to JY-5323 AI Ch0(AI0+,Pin#45),the negative terminals to AI Ch0 negative (AI0-,Pin#11).
- Set the sinewave signal($f=50$ Hz, $V_{pp}=5$ V).
- Click **Strat** to run the task.
- Open **Analog Input-->Winform AI Continuous Analog Trigger**, set the following numbers as shown.

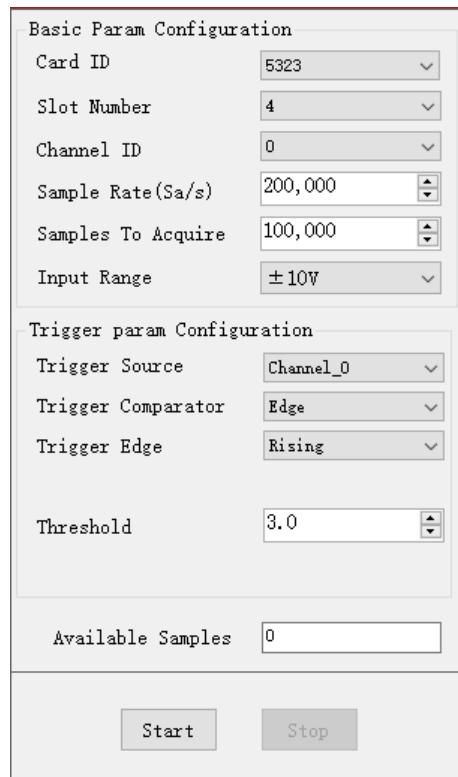


Figure 20 Analog Trigger Params

- Modes of the *Analog Trigger* are set by **Trigger Comparator**. Set it to **Edge**.
- The edge of *EdgeComparator* set by **Trigger Edge**. (**Rising** and **Falling**)
- **Trigger source** can be any channel of JY5500 analog input. Set it to **Channel_0**.
- According to the rules of **Rising** mentioned above, the signal acquisition will not start until it raises to 3.0 V, which is set by **Threshold** above.
- Click Start, a message will appear in the lower left corner:

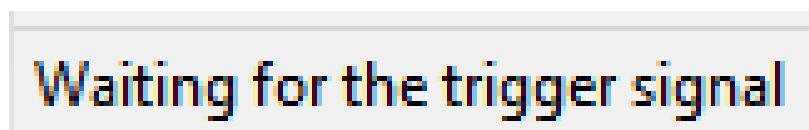


Figure 21 Waiting For Trigger

- The result is shown below:

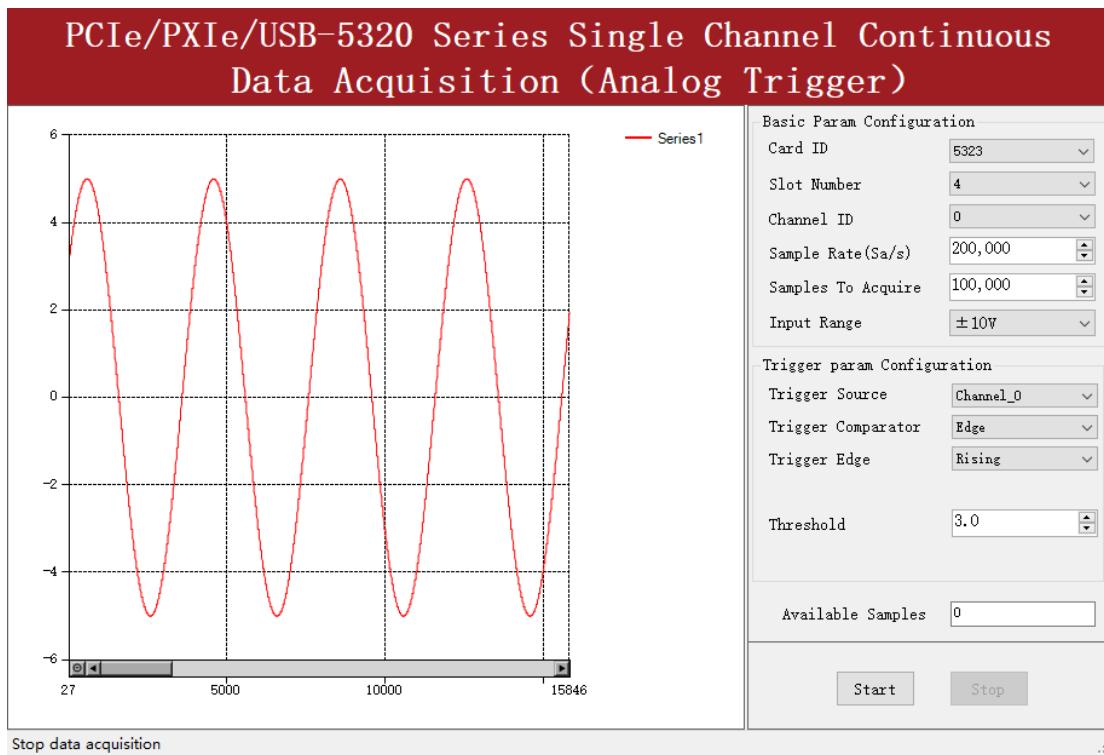


Figure 22 Analog Trigger Acquisition

8.4.4 External Digital Trigger

The module supports different external digital trigger sources from PXI Trigger bus (PXI_TRIGGER<0..7>), PXI_STAR and connectors of front panel (PFI). The high pulse width of digital trigger signal must be longer than 20 ns for effective trigger. The module will monitor the signal on digital trigger source and wait for the rising edge or falling edge of digital signal which depending on the set trigger condition, then cause the module to acquire the data as shown in Figure 23.

Figure 23 External Digital Trigger

Learn by Example 8.4.4

- Connect the signal source two positive terminals to JY-5323 AI Ch1, (AI1+, Pin #47) and digital trigger source (PFI 0, Pin#1), two negative terminals to the ground of

analog input (AI1-, Pin#13) and the ground of digital input/output (DGND, Pin#5). (AI1+, AI_GND) consists of a RSE input. (PFI0, DGND) provides the trigger signal.

- Set a sinewave signal (f=20Hz, Vpp=5V) and a squarewave signal (f=8Hz, Vpp=5V).
- Open **Analog Input-->Winform AI Continuous Digital Trigger**.
- **Trigger Source** must match the pin on 5323.
- There are two **Trigger Edge: Rising and Falling**.
- Click **Start** and the result shows below:

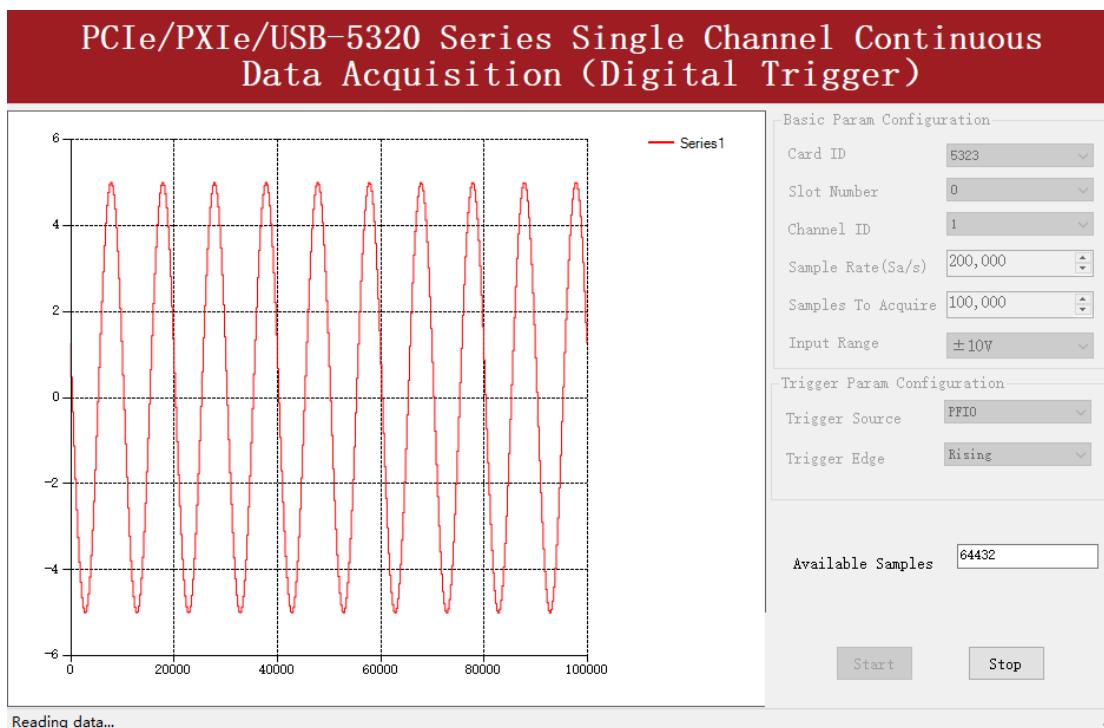


Figure 24 Digital Trigger Acquisition

- Since the squarewave is used for the digital trigger source, when a rising edge of the squarewave occurs, the digital trigger will be activated, and the data acquisition will start.

8.5 Trigger Mode

JY-5321/5322/5323/5324 supports several trigger modes: Start Trigger, Reference Trigger, ReTrigger and Sample Clock.

8.5.1 Start Trigger

In this mode, data acquisition begins immediately after the trigger. This trigger mode

is suitable for continuous acquisition and finite acquisition. As shown in Figure 25. Please see the provided software examples for more information.

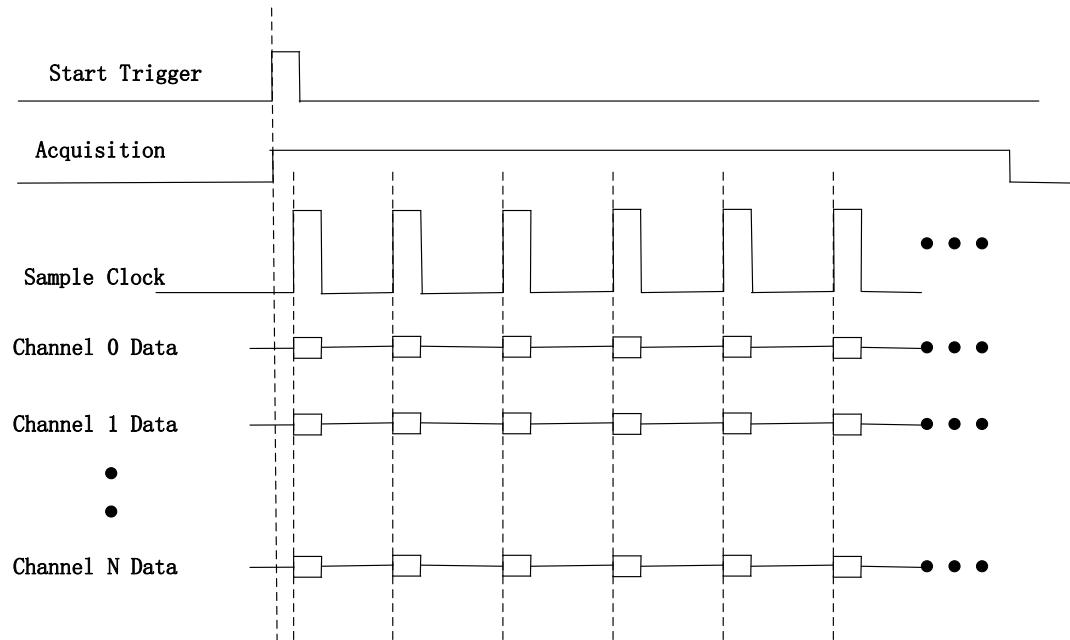


Figure 25 Start Trigger

8.5.2 Reference Trigger

This trigger mode is suitable for finite acquisition. In this mode, user can set the number of pre-trigger samples. The default number of pre-trigger points is 0. First, you need to start the acquisition task and then the acquisition task will return the acquired data when the trigger condition is met. An example is shown below.

Example

- Total samples: 1000;
- Channel Count: 1
- Pre-trigger samples: 10;
- It returns total 1000 samples, 10 samples to be acquired before trigger, 990 samples after trigger.

The acquisition timing is shown in Figure 26. Please see the provided software examples for more information.

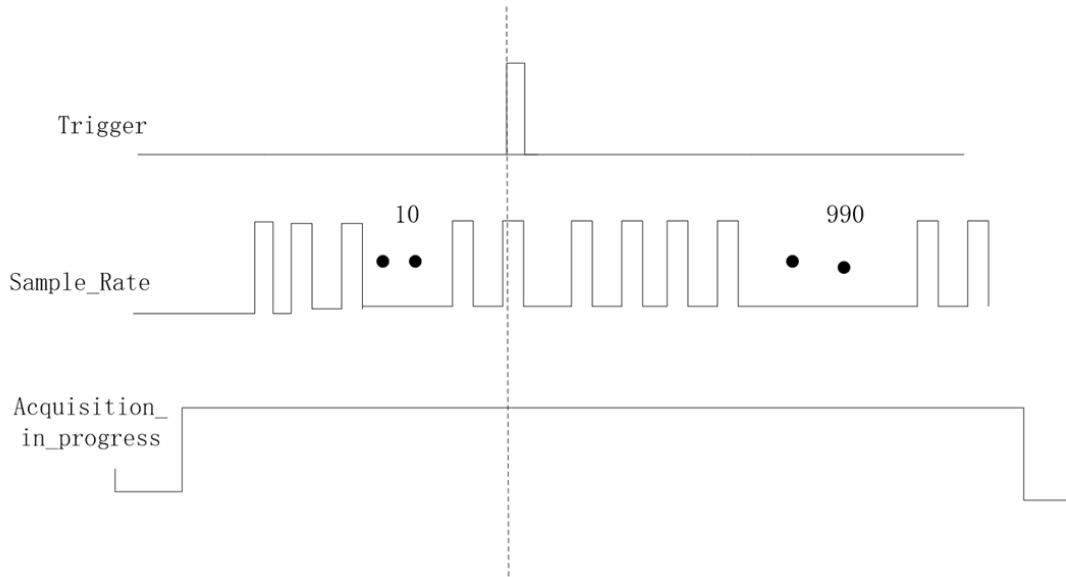


Figure 26 Reference Trigger

8.5.3 ReTrigger

JY-5321/5322/5323/5324 series modules support retrigger mode. In the retrigger mode, you can set the number of trigger times and the length of each acquisition. Assuming that the number of trigger times is N and the length of each trigger acquisition is M , the length of all acquisition data is $N * M * \text{channel counts}$ as shown in Figure 27.

When the number of trigger times is -1, it will wait on trigger infinitely.

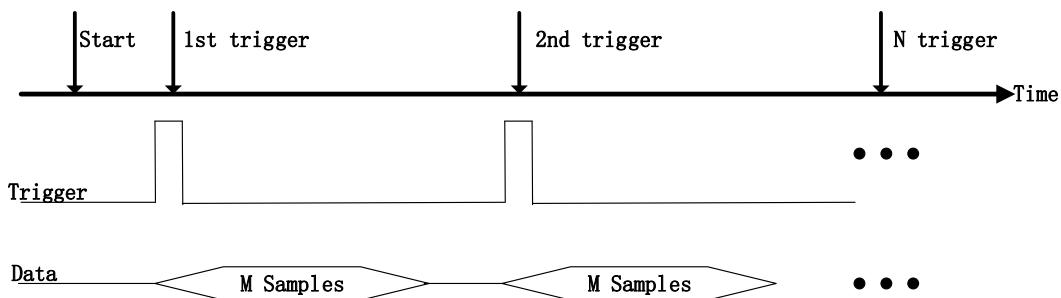


Figure 27 Re-Trigger

Learn by Example 8.5.3

- Connect the signal source's positive terminal to JY-5323 AI Ch0 (AI0+, Pin#45), the negative terminal to the ground (AI0-, Pin#11) consists of an RSE input.
- Set a sinewave signal ($f=50\text{Hz}$, $V_{pp}=5\text{V}$).
- Open **Analog Input-->Winform AI Finite Analog Trigger**, set the following

numbers as shown.

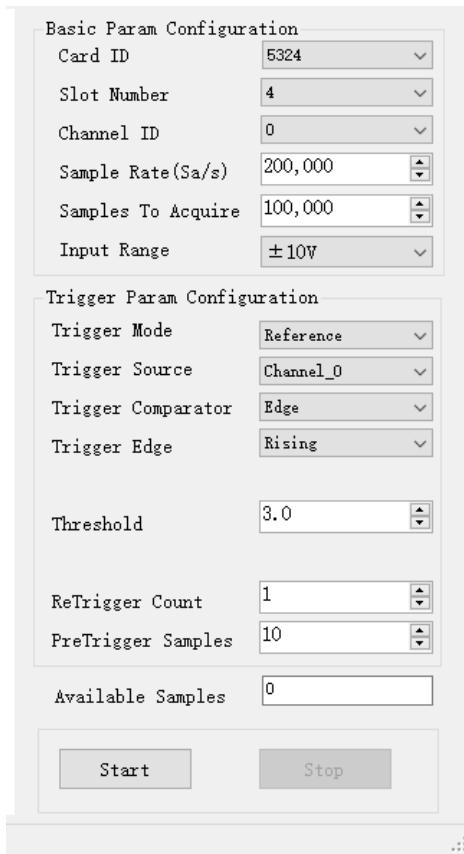


Figure 28 Retrigger Params

- You can use three different kinds of triggers in this program as mentioned in 错误!未找到引用源。. *Start Trigger* and *Reference Trigger* can be set by **Trigger Mode**. For *ReTrigger* can be used by changing the numbers in **Retrigger Count**.
- *PretriggerSamples* is set by **Pretrigger Samples**.
- Now the trigger is a **Start Trigger**. Click **Start** to begin the data acquisition, the result is shown below:

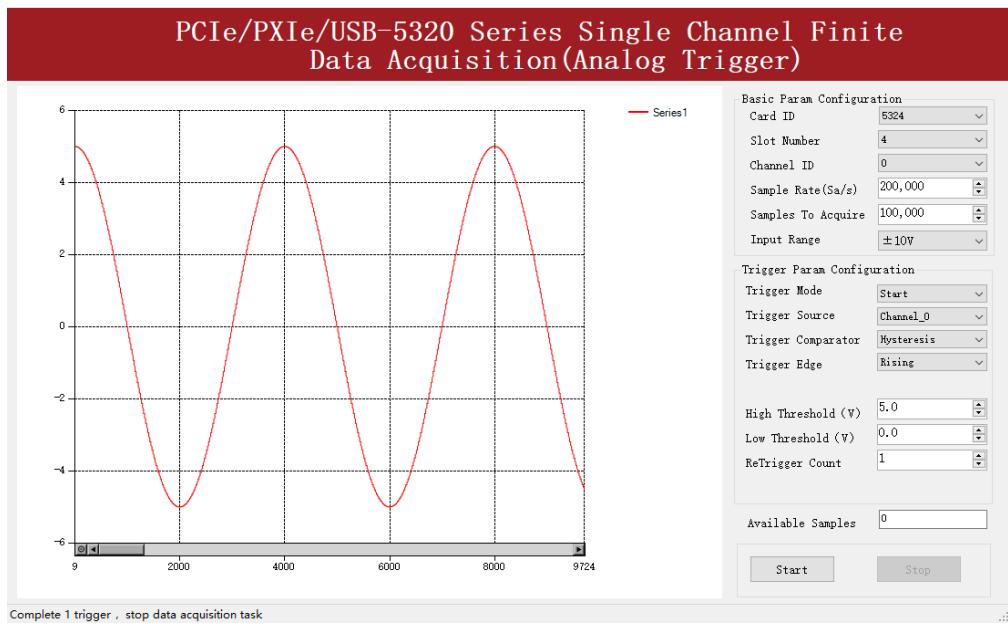


Figure 29 Retrigger In Start Trigger Mode

- Now change the **Trigger Mode** to **Reference** mode with **Pretrigger Samples 1000**. A different result shows below:

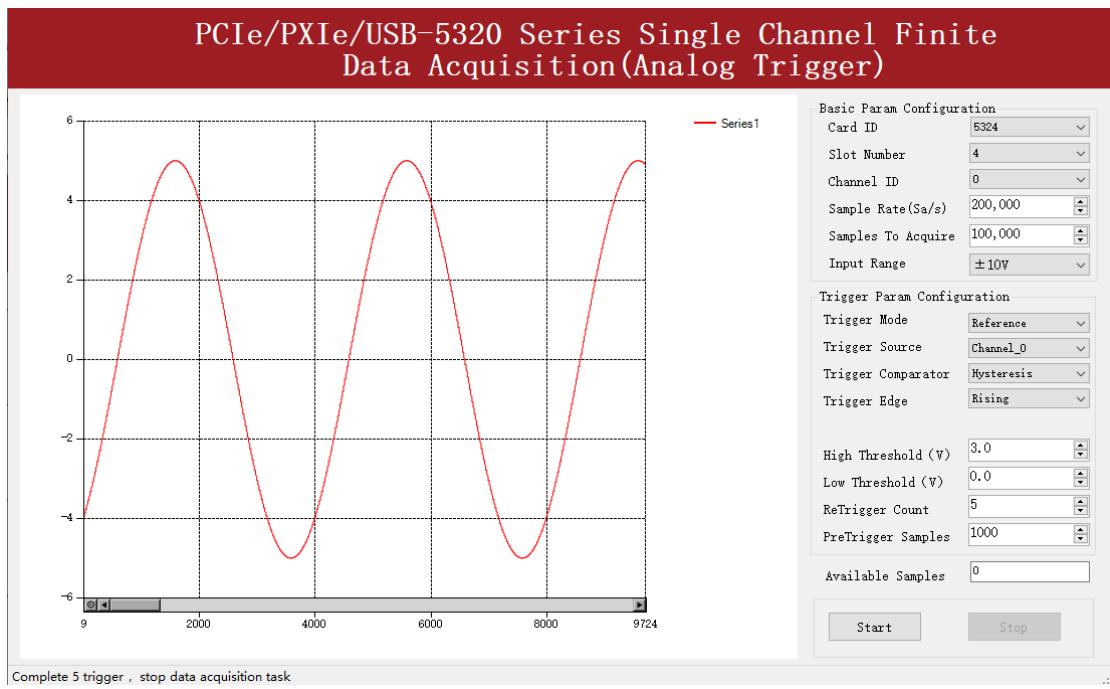


Figure 30 Retrigger In Reference Trigger Mode

- Now change the mode of trigger to Retrigger through giving Retrigger Count a number other than 0 and click Start. A message will appear in the lower left corner: "Complete the n^{th} "trigger".

Complete the 2th trigger

Figure 31 Complete Retrigger Count

- It shows the acquisition process through every trigger signal.

8.5.4 Sample Clock

For all counter measurement applications with buffered measurement, JY-5321/5322/5323/5324 provides 3 sample clock options as follows:

- Internal

The internal sample clock is generated by dividing down the 200MHz base clock, and can be set independently for each counter.

To use the internal sample clock, configure as follows:

1. Set JY5320CITask.SampleClock.Source to CISampleClockSource.Internal
2. Set JY5320CITask.SampleClock.Internal.Rate to specify sample rate

- External

External sample clock refers to an external signal input from a terminal as the sample clock

To use the external sample clock, configure as follows:

1. Set JY5320CITask.SampleClock.Source to CISampleClockSource.External
2. Set JY5320CITask.SampleClock.External.ExpectedRate to the rate of the external sample rate.

This property's value helps the driver determine a more suitable DDR writing frequency.

Can be set to an approximate value (sometimes the external sample clock may not have a fixed frequency). But cannot be less than the actual sampling rate, otherwise it will cause DDR write exception.

The default value of this property is -1, which means that the driver will be set with the safest value.

- Implicit

Using an implicit sampling clock means the counter will send data to the buffer whenever there is a new measurement or count value.

To use the implicit sample clock, configure as follows:

1. Set JY5320CITask.SampleClock.Source to CISampleClockSource.Implicit.
2. Set JY5320CITask.SampleClock.Implicit.ExpectedRate to desired sample rate. This property has the same effect as JY5320CITask.SampleClock.External.ExpectedRate.

8.6 Digital I/O Operations

JY-5321/5322/5323/5324 provides powerful programmable digital I/O functions. Please see the provided software examples for more information.

8.6.1 Static DI/DO

Programmable I/O supports static TTL, 8 ports<0..7> with 2 lines which is total 16 channels digital I/O. User can read these I/O information through software polling.

Learn by Example 8.6.1

- In this example JY-5323 outputs a digital signal by its DO function and reads it back by its DI function.
- Connect Connector0 of JY-5323 to the TB-68 terminal block.
- Connect Port 0/Line 0~1 (P0.0~0.1) to Port 1/Line 0~1 (P1.0~1.1). JY-5323 sends a digital signal through Port 0 and reads the signal back from Port 1.
- Open the first program Digital Output-->Winform DO SinglePoint.
- Select port 1 for Digital Output, Set Line 0 in High-Level positions, make sure all other lines are in Low-Level positions. Click Start to generate the High-Levels as shown.

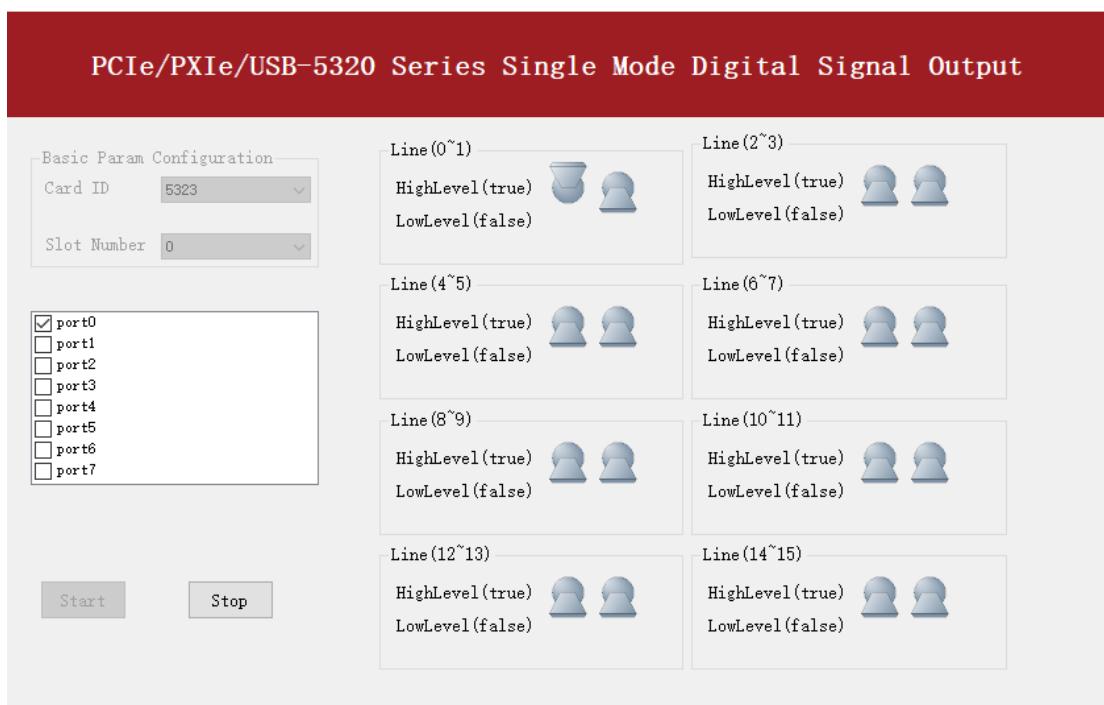


Figure 32 Single Digital Output

- Open the second program **Digital Input-->Winform DI SinglePoint**.

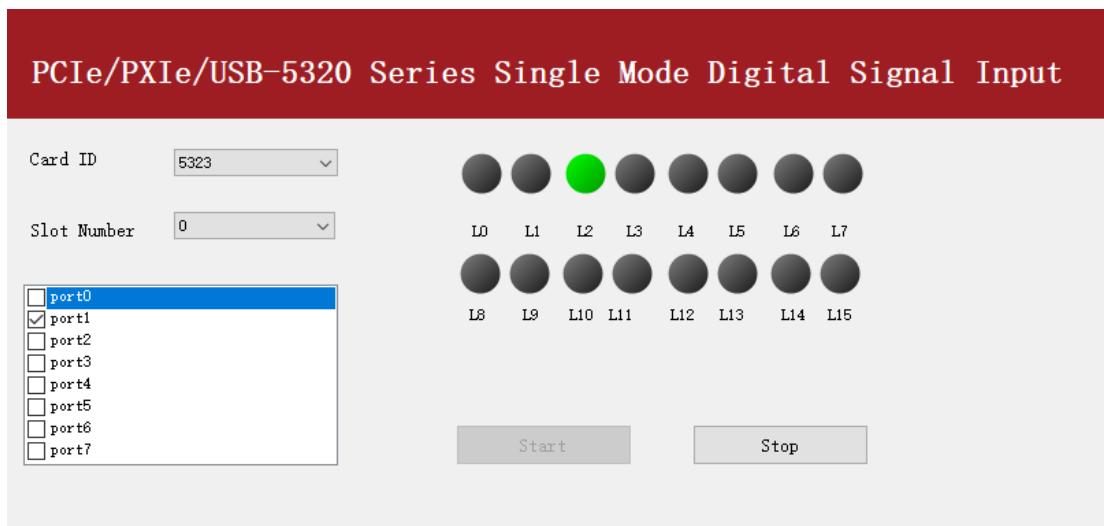


Figure 33 Single Digital Input

8.7 Counter Measurement Operations

The JY-5321/5322/5323/5324 has two or one identical 32-bit channels of timer/counter as shown in Figure 34.

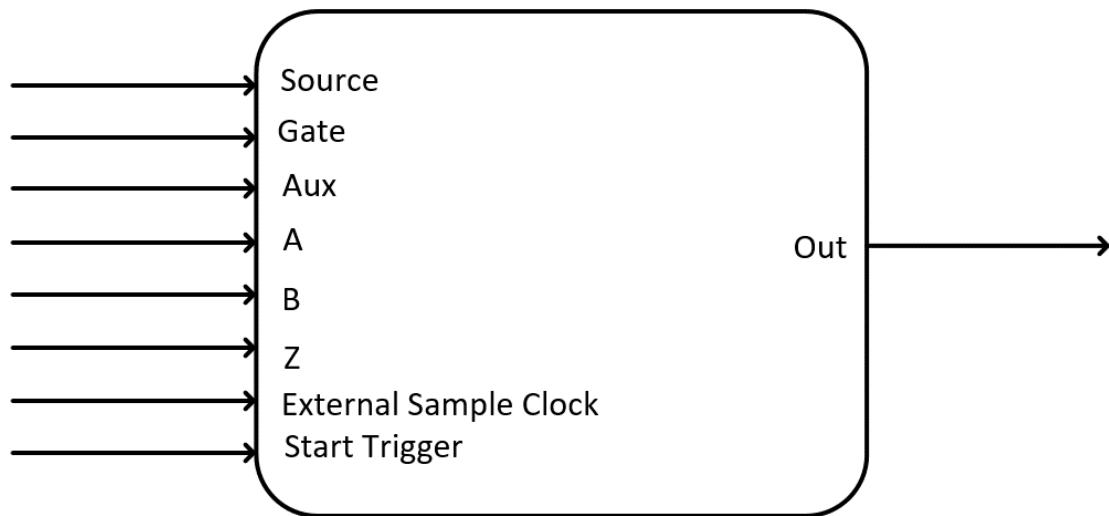


Figure 34 Counter Input Diagram (TBD)

Each counter has eight input terminals and one output terminal, and these terminals have different functions in different counter measurement application described below:

- Edge Counting
- Pulse Measurement
- Frequency Measurement
- Period Measurement
- Two-Edge Separation
- Quadrature Encoder (x1, x2, x4)
- Two-Pulse Encoder

For buffered acquisition, each counter has a separate DDR storage space and requires a sample clock.

8.7.1 Edge Counting

The counter counts the number of active edges of input signal. Default, the input signal must be connected to Counter Source terminal.

Set JY5320CITask.Type to CIType.EdgeCounting to use this function.

Timing

1) Single Mode

The counting value is written to the register on each rising edge or falling edge of the

measured signal as shown in Figure 35.

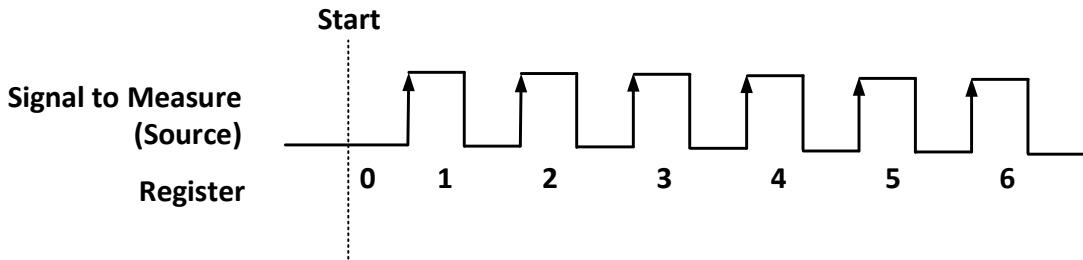


Figure 35 Simple Edge Counting in Single Mode

To configure the counter to work in this mode, set `JY5320CITask.Mode` to `CIMode.Single`.

2) Finite/Continuous Mode with Explicit Sample Clock

The counting value is stored into the buffer on each rising edge of the sample clock as shown in Figure 36.

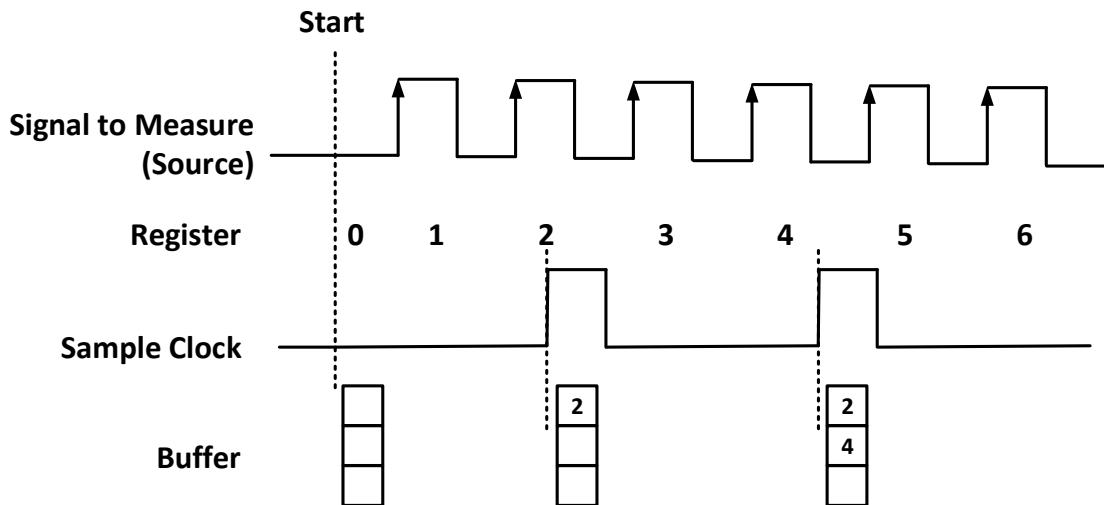


Figure 36 Buffered Edge Counting with Explicit Sample Clock

To configure the counter to work in this mode, set `JY5320CITask.Mode` to `CIMode.Finite` or `CIMode.Continuous`, and set `JY5320CITask.SampleClock.Source` to `CISampleClockSource.Internal` or `CISampleClockSource.External`.

3) Finite/Continuous Mode with Implicit Sample Clock

In implicit mode, the signal active edge as the implicit sample clock edge. The counting value is stored into the buffer on each rising edge of the measured signal as shown in Figure 37.

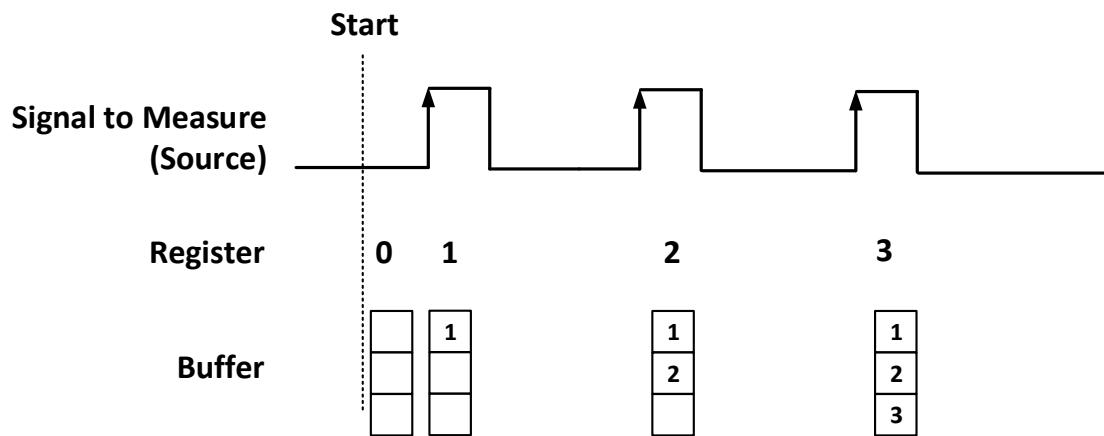


Figure 37 Simple Edge Counting with Implicit Sample Clock

To configure the counter to work in this mode, set JY5320CITask.Mode to CIMode.Finite or CIMode.Continuous, and set JY5320CITask.SampleClock.Source to CISampleClockSource.Implicit.

Pause Trigger

Pause trigger is used to pause counting when the input signal is active depending on active polarity configuration as shown in Figure 38. Default, the Pause Trigger signal must be connected to Counter Gate terminal.

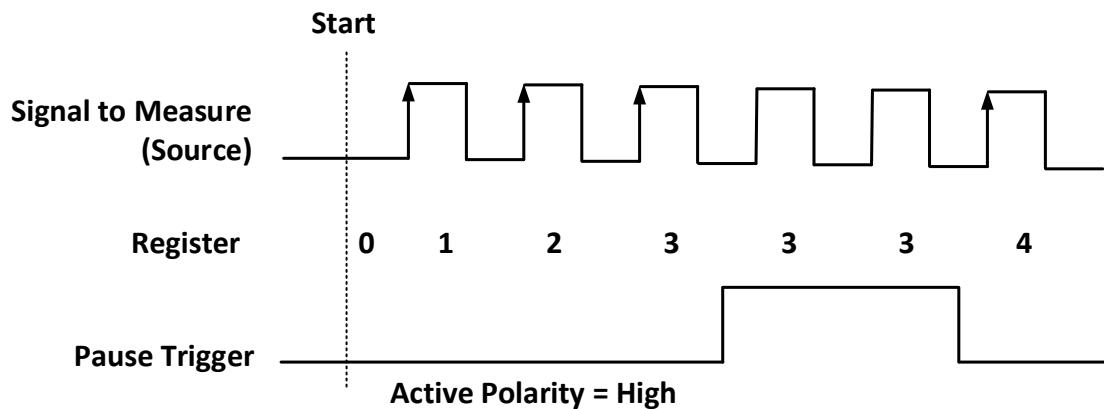


Figure 38 Pause Trigger

To configure the pause trigger, use the properties as below:

- JY5320CITask.EdgeCounting.Pause.ActivePolarity – To set active level (high or low) to pause counting.

Count Direction

User can control the counting direction through software configuration or by an external input signal. Default, the external control direction signal must be connected

to Counter Aux terminal.

When using an input signal to control the counting direction, the counter counts up when the signal is high and counts down when the signal is low as shown in Figure 39.

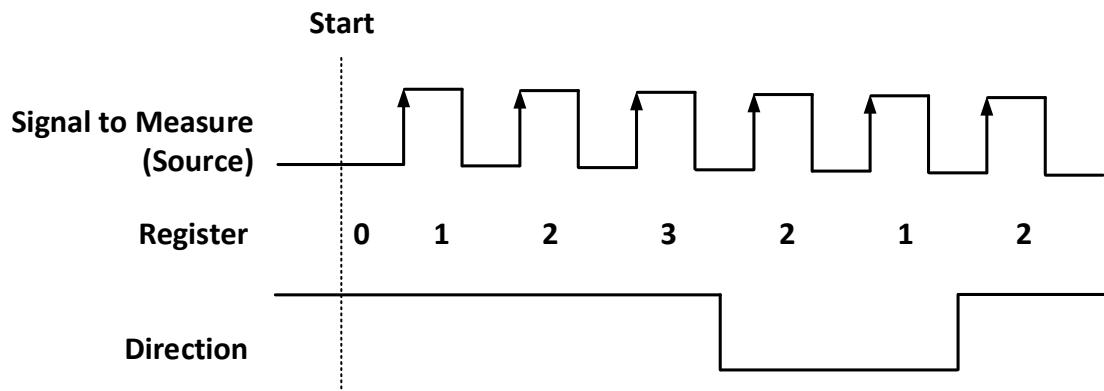


Figure 39 Count Direction

To configure the count direction, use the properties as belows:

- JY5320CITask.EdgeCounting.Direction – To specify count up, count down, or controlled by an external signal.

Exporting Count Event

When the counting value reaches the specified threshold, the counter will generate a pulse. To change the threshold, using following property:

- JY5320CITask.EdgeCounting.OutEvent.Threshold

Terminals

To change the terminal of signals instead of using its default value as shown in chapter 8.3, using following properties:

- JY5320CITask.EdgeCounting.InputTerminal – Signal-to-measure input terminal.
- JY5320CITask.EdgeCounting.Pause.Terminal – Pause signal input terminal.
- JY5320CITask.EdgeCounting.DirTerminal – External direction control signal input terminal.
- JY5320CITask.EdgeCounting.OutEvent.Terminal – Count event output terminal.

Learn by Examples8.7.1

Connect the signal source's positive terminal of a signal source to PCIe-5323 counter0's edge counting source (CTR0_Source/A, Pin#1), negative terminal to the ground (DGND,

Pin#5) . (CTR0_Source, DGND) consists of an edge counting counter input and they share the same ground.

Set a squarewave signal (f=100Hz, Vpp=8V).

Single Mode

Open **Counter Input-->Winform CI Single EdgeCounting**, set the following numbers as shown:

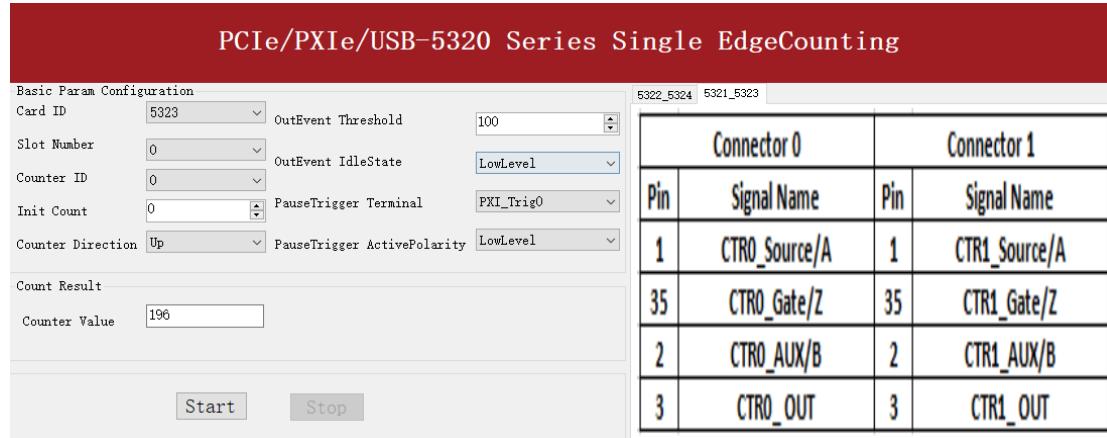


Figure 40 EdgeCounting For Single Mode

- Counter Direction is set by Counter Direction.
- The table in the sample program is a connection diagram for your convenience.
- The rising edge counter works when Start is clicked.
- The result is shown by Counter Value. In this example the Counter Value increases by 100 every second for a 100Hz sinewave.

Finite/Continuous Mode

- Open **Counter Input-->Winform CI Finite/Continuous EdgeCounting**, set the following numbers as shown:
- Click Start to start counting by rising edge. The result is shown below

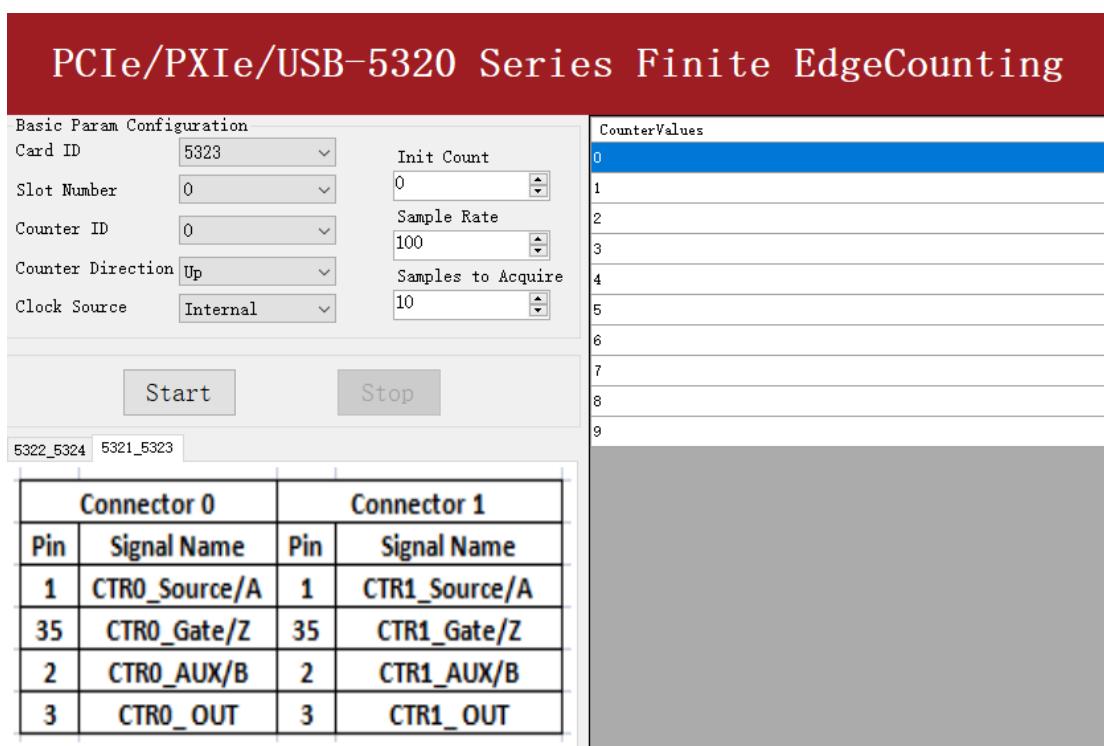


Figure 41 EdgeCounting For Finite Mode

- The table in the sample program is a connection diagram for your convenience.
- Counter Direction is set by **Counter Direction**.
- There are one clock sources in JY-5323 Internal: This example uses **Internal** mode set by **Clock Source**.

8.7.2 Pulse Measurement

The counter measures the high-level and low-level duration of a pulse on a signal. Default, the input signal must be connected to Counter Gate terminal.

Set JY5320CITask.Type to CIType.Pulse to use this function.

Timing

1) Single Mode

The counting value of the duration of the high-level or low-level is written to the register on each rising or falling edge of the pulse to measure, as shown in Figure 42.

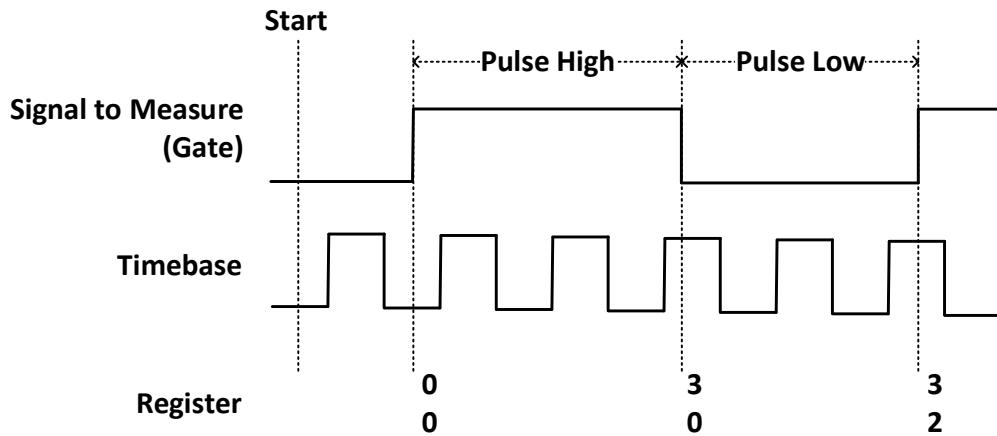


Figure 42 Pulse Measurement in Single Mode

To configure the counter to work in this mode, set `JY5320CITask.Mode` to `CIMode.Single`.

2) Finite/Continuous Mode with Explicit Sample Clock

The counting value of the duration of the high-level or low-level is stored into the buffer on each rising edge of the sample clock, as shown in Figure 43

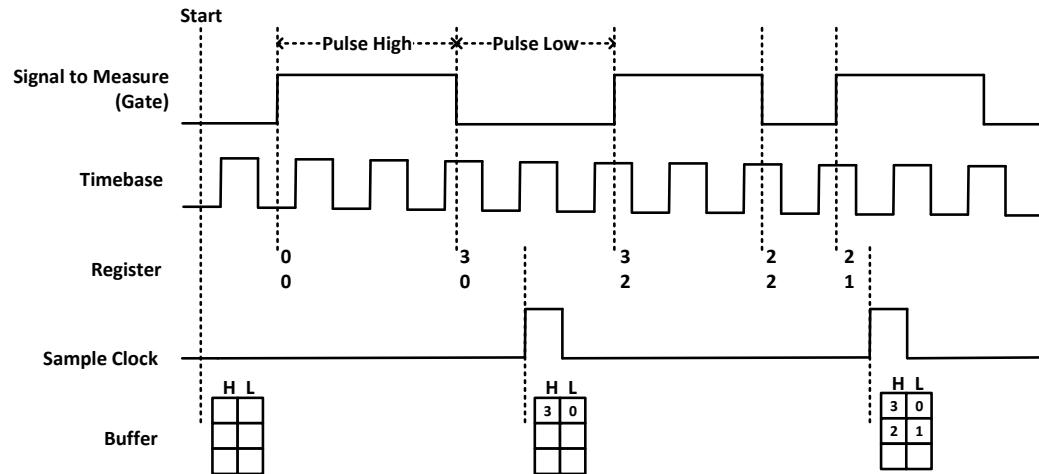


Figure 43 Pulse Measurement with Explicit Sample Clock

To configure the counter to work in this mode, set `JY5320 CITask.Mode` to `CIMode.Finite` or `CIMode.Continuous`, and set `JY5320 CITask.SampleClock.Source` to `CISampleClockSource.Internal` or `CISampleClockSource.External`.

3) Finite/Continuous Mode with Implicit Sample Clock

In implicit mode, the signal active edge as the implicit sample clock edge. The counting value of the duration of the high-level or low-level is stored into the buffer on each

rising edge of the measured pulse, as shown in Figure 44.

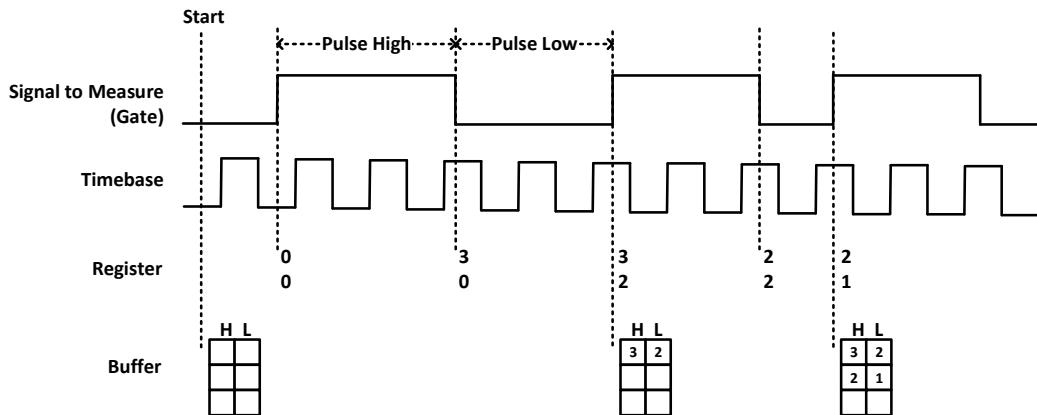


Figure 44 Pulse Measurement with Implicit Sample Clock

To configure the counter to work in this mode, set `JY5320CITask.Mode` to `CIMode.Finite` or `CIMode.Continuous`, and set `JY5320CITask.SampleClock.Source` to `CISampleClockSource.Implicit`.

Timebase

JY-5321/5322/5323/5324 provides four options for timebase source as follows:

- Internal 200MHz: - Same signal as the 200MHz base clock generated by PLL.
- Internal 5MHz – Generated by dividing down the 200MHz timebase.
- Internal 100kHz – Generated by dividing down the 200MHz timebase.
- External - Use a signal on a terminal as the timebase

By default, the counter uses the onboard 200MHz timebase to measure pulses. Use the property `JY5320CITask.PulseMeas.Timebase` to configure the timebase.

Terminals

To change the terminal of signals instead of using its default value shown in chapter 2.6, use following properties:

- `JY5320CITask.PulseMeas.InputTerminal` – Signal-to-measure input terminal.
- `JY5320CITask.PulseMeas.Timebase.External.Terminal` – External timebase input terminal.

Learn by Examples 8.7.2

- Connect the signal source's positive terminal to PCIe-5323 counter0's pulse

measure source (CTR0_Gate/Z, Pin#35), negative terminal to the ground (DGND, Pin#39) . (CTR0_Gate/Z, DGND) consists of a pulse measure counter input and they share the same ground.

- Set a squarewave signal (f=50Hz, Duty Cycle=50%, Vpp=5V).

Single Mode

- Open Counter Input-->Winform CI Single PulseMeasure
- The table in the sample program is a connection diagram for your convenience.
- Click Start to start measuring the pulses. The result is shown by High Pulse Measure(S) and Low Pulse Measure(S):

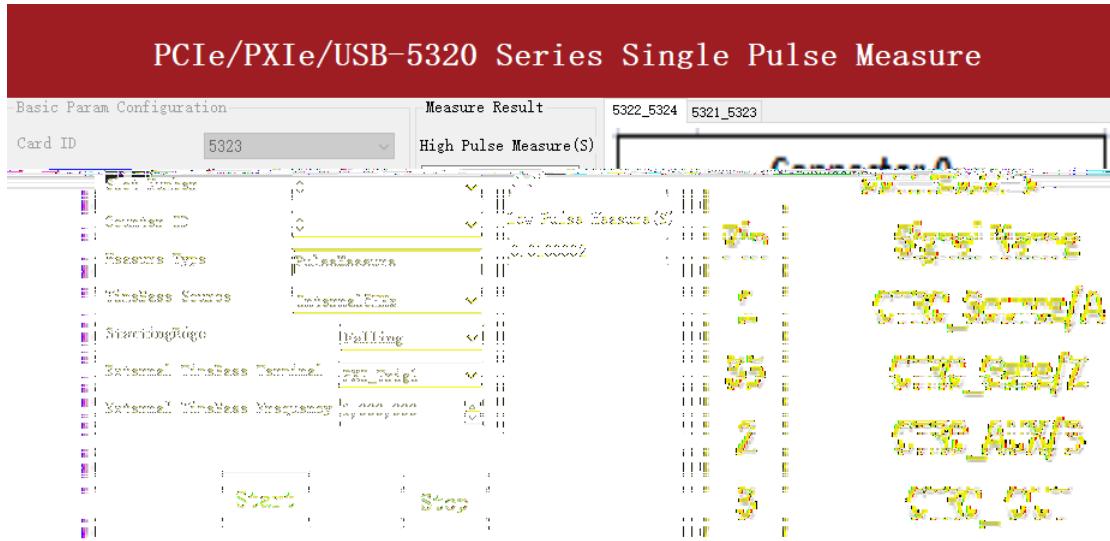


Figure 45 Pulse Measure Value For Single Mode

- The numbers show the duration of High/Low Pulse in one signal period and match the duty cycle set before.

Finite/Continuous Mode

- Change the frequency of Squarewave to 50 Hz.
- Open Counter Input-->Winform CI Finite/Continuous PulseMeasure.
- Click Start to begin the finite/continuous pulse measurement. The result is shown below:
- The numbers show the duration of **High/Low Pulse** in one signal period and match the duty cycle set before.

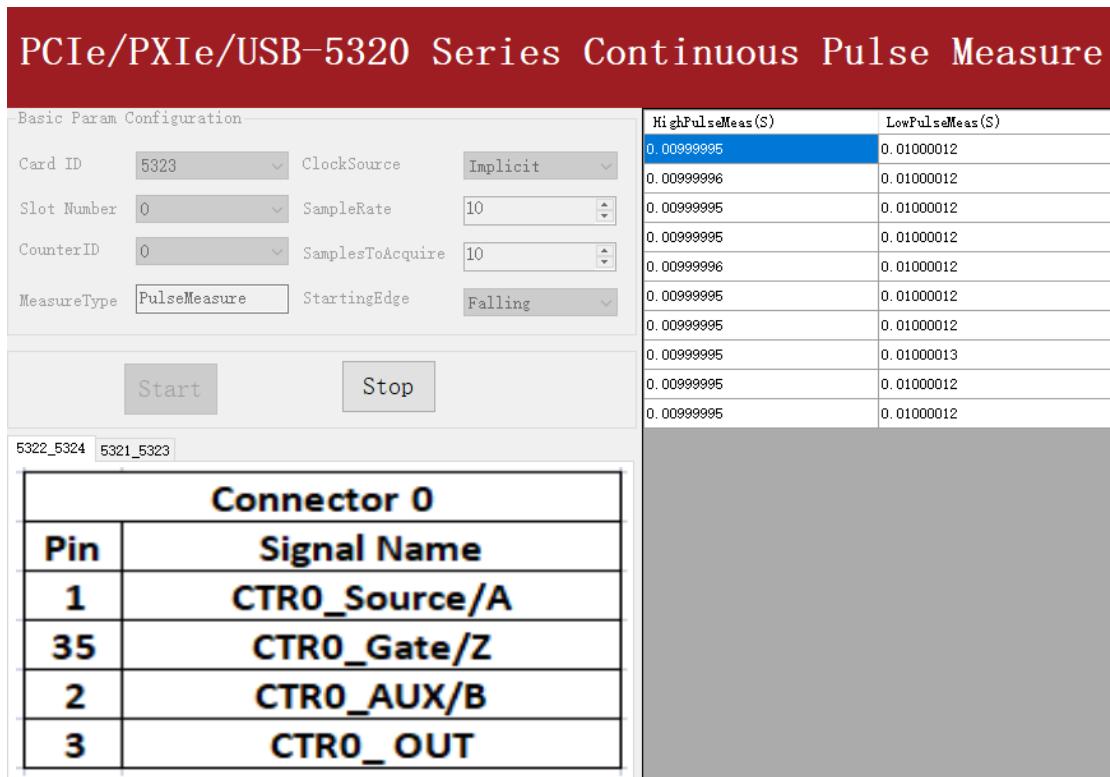


Figure 46 Pulse Measure Values For Continuous Mode

8.7.3 Frequency Measurement

The counter measures the frequency of the signal. Default, the measured signal must be connected to Counter Gate terminal.

Set JY5320CITask.Type to CIType.Frequency to use this function.

Timing

1) Single Mode

Frequency Measurement without sample clock is actually using Pulse Width Measuement internally, refer to chapter 8.7.2 for more information.

Every time the user reads the data, driver will automatically calculate the frequency (f_x) according to the HighTick ($tick_h$), LowTick ($tick_l$) values and known frequency of the timebase (f_{base}) according to the fomular and return the signal frequency to the user.

$$f_x = f_{base} \times \frac{1}{tick_h + tick_l}$$

To configure the counter to work in this mode, set JY5320CITask.Mode to CIMode.Single.

2) Finite/Continuous Mode with Explicit Sample Clock (*Averaging*)

Between every two rising edges of the sample clock, the counter counts the number of full periods ($T1$) of the signal, and the number of rising edges of timebase ($T2$) during those full periods. These two values are stored into the buffer on each rising edge of the sample clock, as shown in Figure 47.

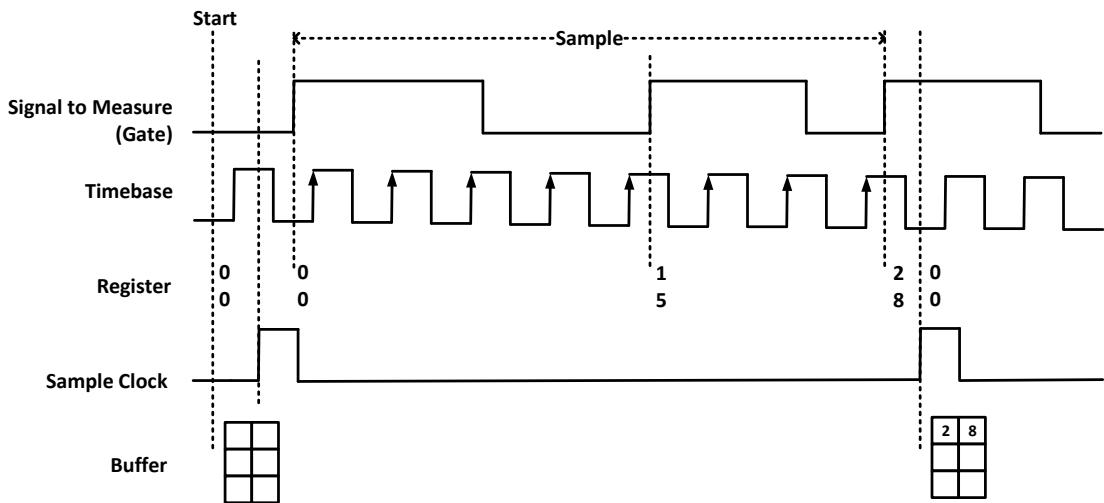


Figure 47 Frequency Measurement with Explicit Sample Clock

Every time the user reads the data, driver will automatically calculate the frequency (f_x) according to the buffered values and known frequency of the timebase (f_{base}) by using following fomular and return the result to user.

$$f_x = f_{base} \times \frac{T1}{T2}$$

To configure the counter to work in this mode, set JY5320CITask.Mode to CIMode.Finite or CIMode.Continuous, and set JY5320CITask.SampleClock.Source to CISampleClockSource.Internal or CISampleClockSource.External.

3) Finite/Continuous Mode with Implicit Sample Clock

Frequency Measurement with implicit sample clock is actually using Pulse Measuement internally. Refer to chapter 8.7.2 for more information.

Every time the user reads the data, driver will automatically calculate the frequency (f_x) according to the HighTick (T_h) and LowTick (T_l) values according to the fomular and return the result to the user.

$$f_x = \frac{1}{T_h + T_l}$$

To configure the counter to work in this mode, set JY5320CITask.Mode to CIMode.Finite or CIMode.Continuous, and set JY5320CITask.SampleClock.Source to CISampleClockSource.Implicit.

Timebase

JY-5321/5322/5323/5324 provides four options for timebase source as follows:

- Internal 200MHz: - Same signal as the 200MHz base clock generated by PLL.
- Internal 5MHz – Generated by dividing down the 200MHz timebase.
- Internal 100kHz – Generated by dividing down the 200MHz timebase.
- External - Use a signal on a terminal as the timebase

By default, the counter uses the onboard 200MHz timebase to measure pulses. Use the property JY5320CITask.FrequencyMeas.Timebase to configure the timebase.

Terminals

To change the terminal of signals instead of using its default value shown in chapter 8.3, using following properties:

- JY5320CITask.FrequencyMeas.InputTerminal – Signal-to-measure input terminal.
- JY5320CITask. FrequencyMeas.Timebase.External.Terminal – External timebase input terminal.

Learn by Examples 8.7.3

- Connect the signal source's positive terminal to PCIe-5323 counter0's frequency measure source (CTR0_Gate/Z, Pin#35), negative terminal to the ground (DGND, Pin#39) . (CTR0_Gate/Z, DGND) consists of a pulse measure counter input and they share the same ground.
- Set a squarewave signal (f=50Hz, Duty Cycle=50%, Vpp=5V).

Fintie/Continuous Mode

- Open Counter Input-->Winform CI Finite/Continuous Frequency Measure.
- The table in the sample program is a connection diagram for your convenience.
- Internal and Implicit Sample Clocks are set by Clock Source as before. (Please refer to Finite/Continuous Mode for more information.)
- Click Start and it will show the frequency 50 as set in the signal resource.

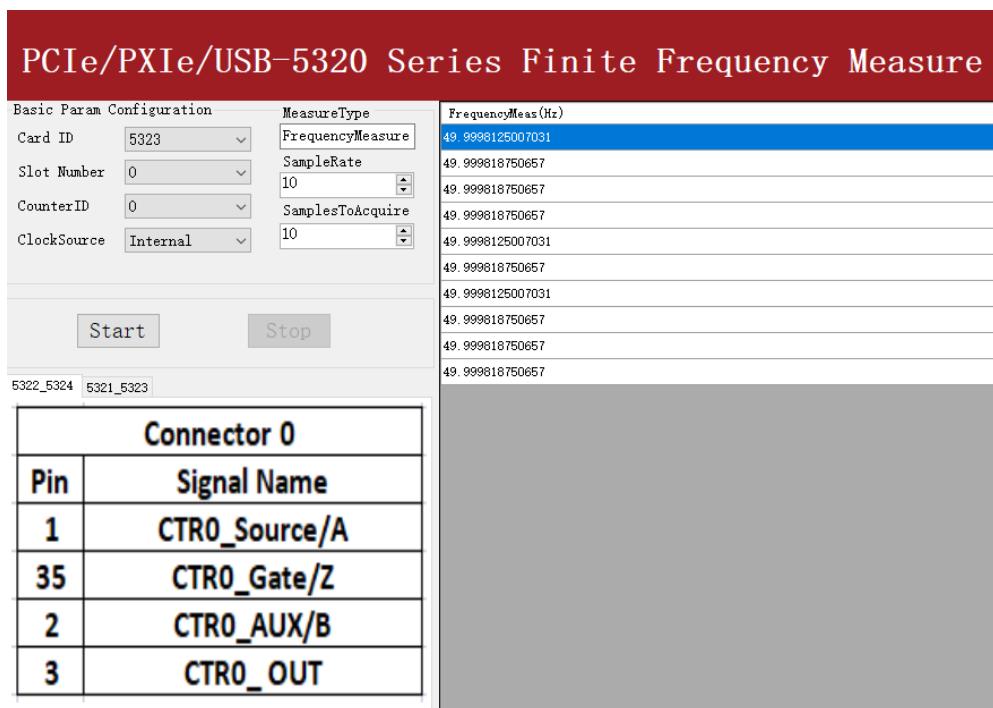


Figure 48 Frequency Measure For Continuous Mode

8.7.4 Period Measurement

The counter measures the period of the signal. Default, the signal must be connected to Counter Gate terminal.

Set JY5320CITask.Type to CIType.Period to use this function.

Period Measurements is using Frequency Measurement internally and returns the reciprocal of Frequency Measurement. Refer to chapter for more information.

Learn by Example 8.7.4

- Connect the signal source's positive terminal to PCIe-5323 counter0's frequency measure source (CTR0_Gate/Z, Pin#35), negative terminal to the ground (DGND, Pin#39) . (CTR0_Gate/Z, DGND) consists of a pulse measure counter input and they share the same ground.
- Set a squarewave signal (f=50Hz, Duty Cycle=50%, Vpp=5V).

Single Mode

- Open Counter Input-->Winform CI Single Period Measure and click Start. The result is shown below by Period Measure(S):

PCIe/PXIE/USB-5320 Series Single Period Measure

Basic Param Configuration		Measure Result	5322_5324 5321_5323
Card ID	5323	Period Measure(S)	0.02000007
Slot Number	0		
Counter ID	0		
Measure Type	PeriodMeasure		

Start Stop

Connector 0	
Pin	Signal Name
1	CTR0_Source/A
35	CTR0_Gate/Z
2	CTR0_AUX/B
3	CTR0_OUT

Figure 49 Period Measure For Single Mode

- The table in the sample program is a connection diagram for your convenience.
- The result of **Period Measure(S)** shows the correspond to the frequency set before.

Finite/Continuous Mode

- Open Counter Input-->Winform CI Finite/Continuous Period Measure and click Start. The result is shown below by PeriodMeasure (S).

The screenshot displays the configuration and data acquisition interface for the PCIe/PXIe/USB-5320 Series. The top section, "Basic Param Configuration", includes fields for Card ID (5323), Slot Number (0), CounterID (0), MeasureType (PeriodMeasure), and ClockSource (Internal). It also features "Start" and "Stop" buttons. The middle section, "PeriodMeas(S)", lists 10 data points, all showing the value 0.0200000725. The bottom section, "Connector 0", is a table mapping pins to signal names: Pin 1 is CTR0_Source/A, Pin 35 is CTR0_Gate/Z, Pin 2 is CTR0_AUX/B, and Pin 3 is CTR0_OUT.

Pin	Signal Name
1	CTR0_Source/A
35	CTR0_Gate/Z
2	CTR0_AUX/B
3	CTR0_OUT

Figure 50 Period Measure For Continuous Mode

The table in the sample program is a connection diagram for your convenience.

The result of **Period Measure(S)** shows the correspond to the frequency set before.

8.7.5 Two-Edge Separation

The counter measures the speration (interval between each rising edges of two signals) between the rising edges of two signals. Default, the first signal must be connected to Counter Gate terminal and the second signal must be connect to Counter Aux terminal.

Set JY5320CITask.Type to CIType.TwoEdgeSeparation to use this function.

Timing

1) Single Mode

The number of rising edges of timebase between the rising edge of the first signal and the rising edge of the sceond signal is written to the register on each rising edge of the second signal.

The number of rising edges of timebase between previous rising edge of the second signal and current rising edge of the first signal is written to the resgiter on each rising edge of the first signal.

As shown in Figure 51.

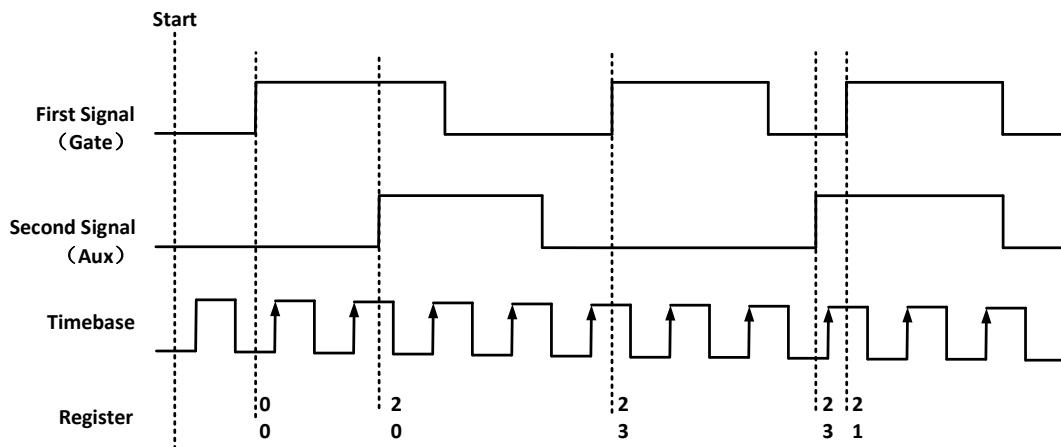


Figure 51 Two-Edge Separation in Single Mode

To configure the counter to work in this mode, set JY5320CITask.Mode to CIMode.Single.

2) Finite/Continuous Mode with Explicit Sample Clock:

The counting values of rising edges of timebase between first signal and second signal are stored into buffer on each rising edge of the sample clock, as shown in Figure 52.

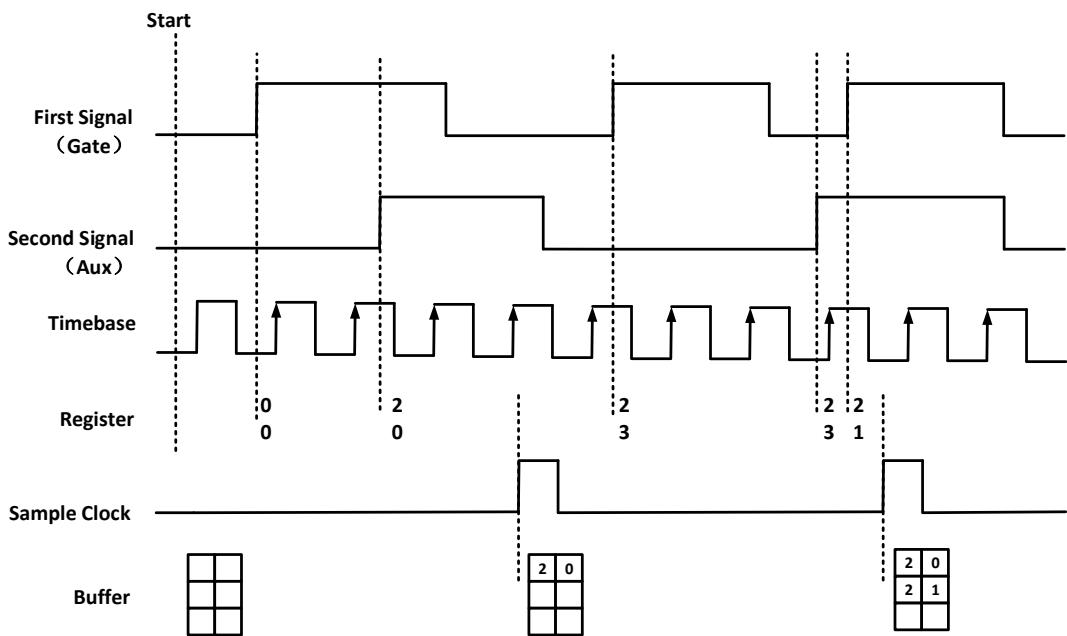


Figure 52 Two-Edge Separation with Explicit Sample Clock

To configure the counter to work in this mode, set `JY5320CITask.Mode` to `CIMode.Finite` or `CIMode.Continuous`, and set `JY5320CITask.SampleClock.Source` to `CISampleClockSource.Internal` or `CISampleClockSource.External`.

3) Finite/Continuous Mode with Implicit Sample Clock

In implicit mode, the signal active edge as the implicit sample clock edge. The counting values of rising edges of timebase between first signal and second signal are stored into buffer on each rising edge of the first signal, as shown in Figure 53.

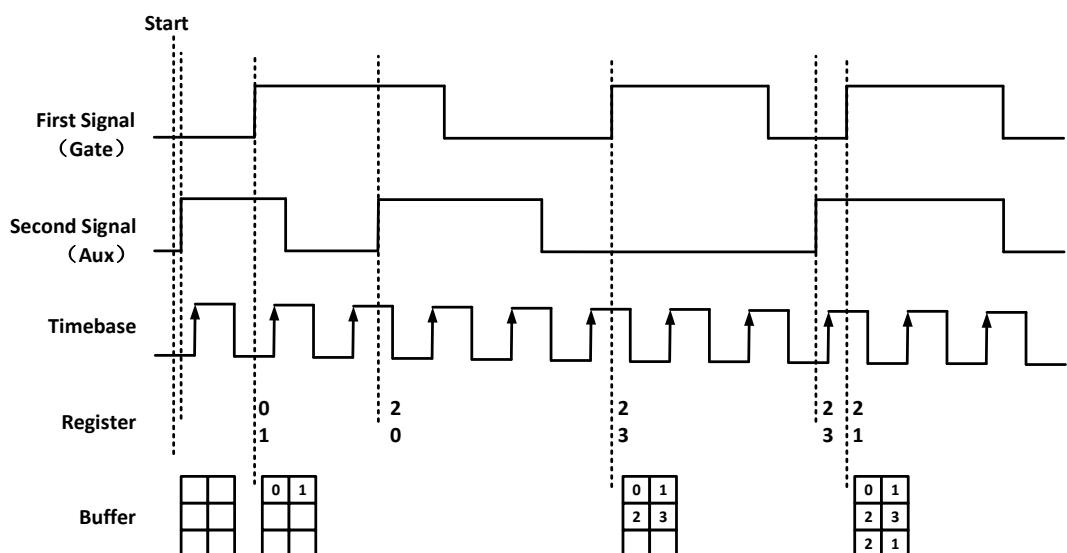


Figure 53 Two-Edge Separation with Implicit Sample Clock

To configure the counter to work in this mode, set JY5320CITask.Mode to CIMode.Finite or CIMode.Continuous, and set JY5320CITask.SampleClock.Source to CISampleClockSource.Implicit.

Timebase

JY-5321/5322/5323/5324 provides four options for timebase source as follows:

- Internal 200MHz: - Same signal as the 200MHz base clock generated by PLL.
- Internal 5MHz – Generated by dividing down the 200MHz timebase.
- Internal 100kHz – Generated by dividing down the 200MHz timebase.
- External - Use a signal on a terminal as the timebase

By default, the counter uses the onboard 200MHz timebase to measure pulses. Use the property JY5320CITask.TwoEdgeSeparation.Timebase to configure the timebase.

Terminals

To change the terminal of signals instead of using its default value shown in chapter 8.3, using following properties:

- JY5320CITask.TwoEdgeSeparation.FirstInputTerminal – First signal-to-measure input terminal.
- JY5320CITask.TwoEdgeSeparation.SecondInputTerminal – First signal-to-measure input terminal.
- JY5320CITask.TwoEdgeSeparation.Timebase.External.Terminal – External timebase input terminal.

Learn by Examples 8.7.5

- Connect the signal source's two positive terminal to PCIe-5323 counter0's frequency measure source (CTR0_Gate/Z, Pin#35) and second signal input (CTR0_AUX/B, Pin#2) negative terminal to the ground (DGND, Pin#39) and (DGND, Pin#6). (CTR0_Gate/Z, DGND) consists of a pulse measure counter input and they share the same ground.
- Set a sinewave signal (f=50Hz, Phase=0°) and a sinewave signal (f=50Hz, Phase=120°).

Single Mode

- Open Counter Input-->Winform CI Single TwoEdgeSeparation Measure and click Start. The result is shown below by **First to Second(S)** and **Second to First(S)**, which represent the time difference between the rising edges of the two signals:



Figure 54 Two-EdgeSeparation Measure For Single Mode

- The table in the sample program is a connection diagram for your convenience.
- Due to the phase-difference between First Signal and Second Signal, First to Second and Second to First are different and summarize as 1.

Finite/Continuous Mode

- Open Counter Input-->Winform CI Finite/Continuous TwoEdge Separation Measure and click Start. The result is shown below by **First to Second(S)** and **Second to First(S)**, which represent the time difference between the rising edges of the two signals:

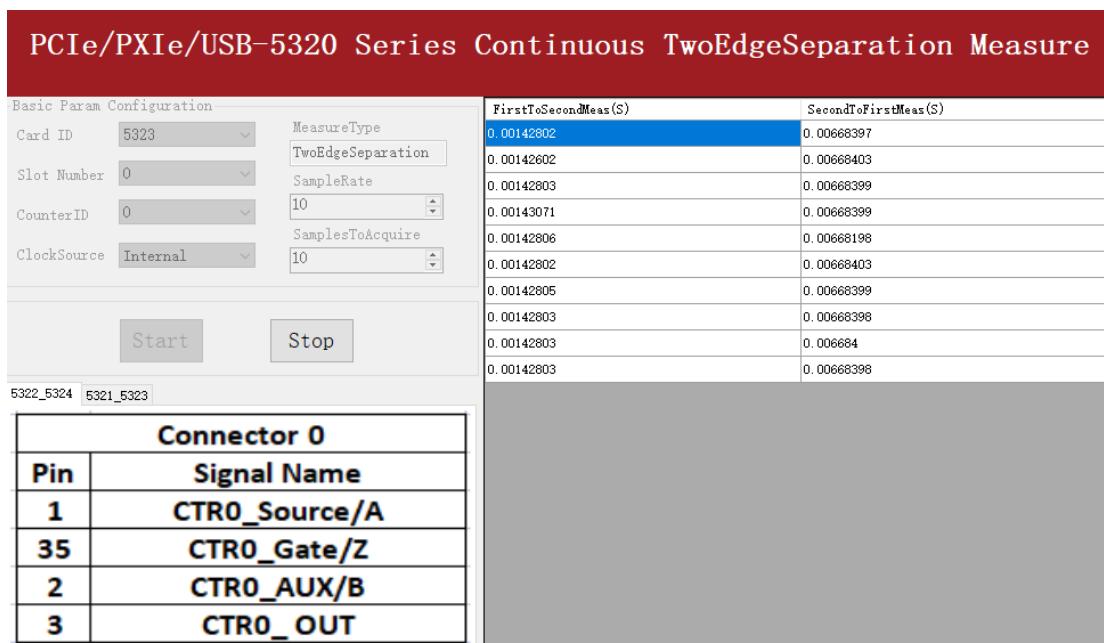


Figure 55 Two-EdgeSeparation Measure For Finite Mode

- The result in this picture is similar to the result in Single Mode before.
- The table in the sample program is a connection diagram for your convenience.

8.7.6 Quadrature Encoder

The quadrature encoder includes three encoding type: x1, x2, and x4.

Set JY5320CITask.Type to CIType. QuadEncoder to use this function, and use property JY5320CITask.QuadEncoder.EncodingType to change the type of encoding. Default, the A signal must be connected to Counter A terminal, the B signal must be connected to Counter B terminal and the Z signal must be connected to Counter Z terminal. For terminal Z, you can connect Z signal to it, or you can disable Z with property "ZReloadEnabled".

Encoding Type

1) x1 Encoding

When A signal leads B signal, the counter increases the count value on the rising edge of A signal; when B signal leads A signal, the counter decreases the count value on the falling edge of A signal as shown in Figure 56.

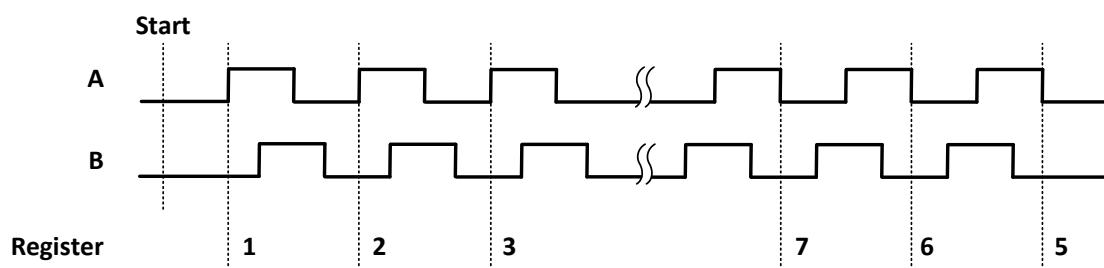


Figure 56 Quadrature Endcoder x1 Mode

2) x2 Encoding

When A signal leads B signal, the counter increases the count on the rising edge and the falling edge of A signal; when B signal leads A signal, the counter decreases the count value the rising edge and falling edge of A signal as shown in Figure 57.

Figure 57 Quadrature Encoder x2 Mode

3) x4 Encoding

When A signal leads B signal, the counter increases the count value on the rising and falling edges of A signal and B signal. When B signal leads A signal, the counter decreases the count value on the rising and falling edges of A signal and B signal. As shown in Figure 58.

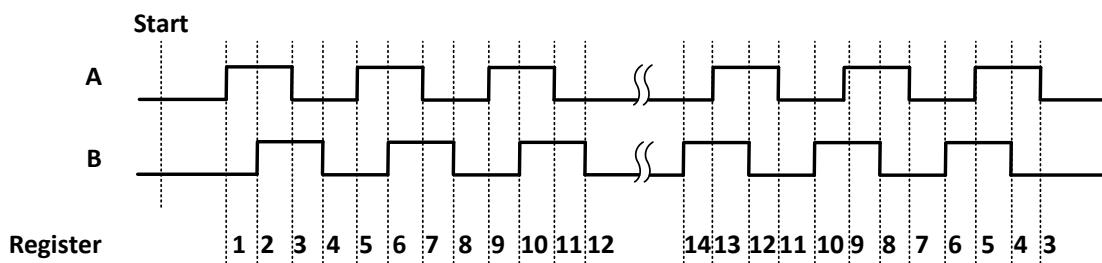


Figure 58 Quadrature Encoder x4 mode

Channel Z Behavior

The reload phase is when Z signal is high and A signal and B signal are low.

Timing

Take Encoding x1 mode as an example.

1) Single Mode

The count value is written to the register on each rising edge of the A signal, as shown in Figure 56.

To configure the counter to work in this mode, set JY5320CITask.Mode to CIMode.Single.

2) Finite/Continuous Mode with Explicit Sample Clock

The count value is stored into the buffer on each rising edge of the sample clock, as shown in Figure 59.

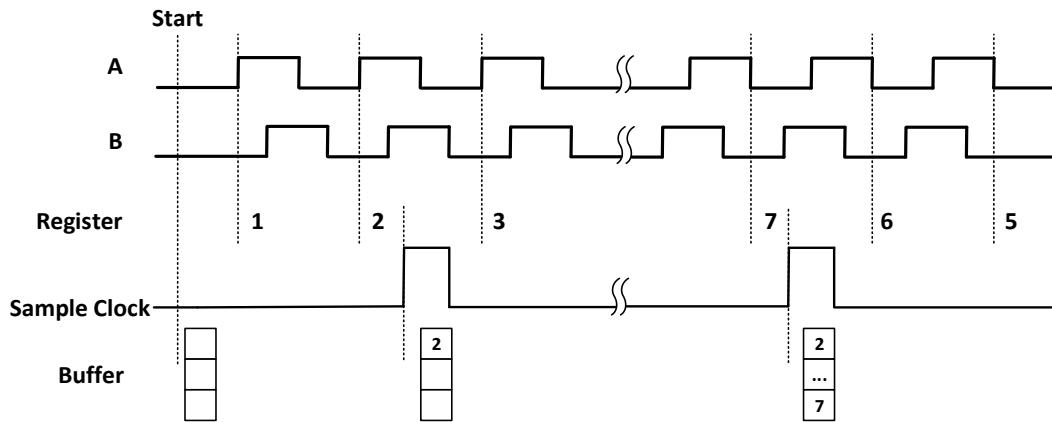


Figure 59 Quadrature Encoder x4 with Explicit Sample Clock

To configure the counter to work in this mode, set `JY5320CITask.Mode` to `CIMode.Finite` or `CIMode.Continuous`, and set `JY5320CITask.SampleClock.Source` to `CISampleClockSource.Internal` or `CISampleClockSource.External`.

3) Finite/Continuous Mode with Implicit Sample Clock

In implicit mode, the signal active edge as the implicit sample clock edge. The count value is stored into the buffer on the transition of signal as shown in Figure 60.

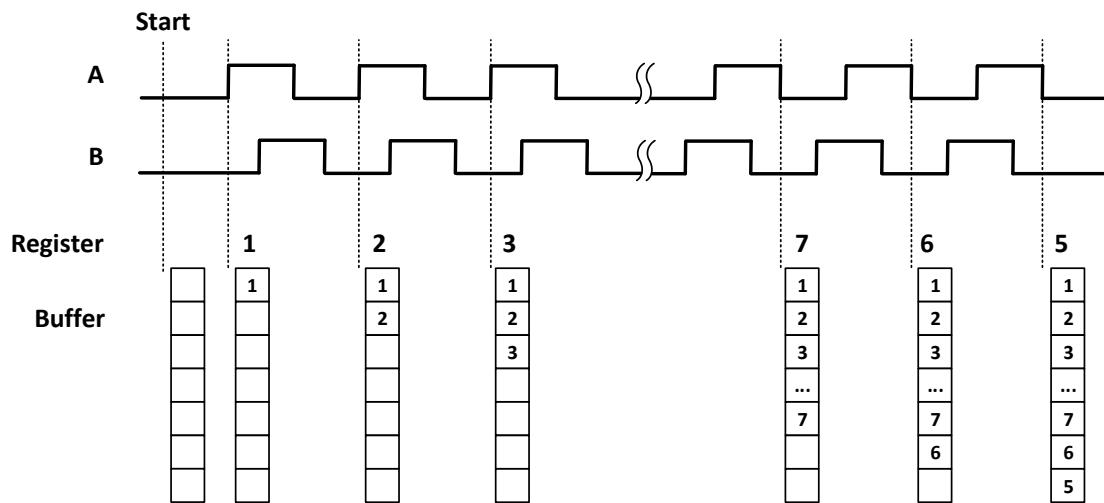


Figure 60 Quadrature Encoder x4 with Implicit Sample Clock

To configure the counter to work in this mode, set `JY5320CITask.Mode` to `CIMode.Finite` or `CIMode.Continuous`, and set `JY5320CITask.SampleClock.Source` to `CISampleClockSource.Implicit`.

Terminals

To change the terminal of signals instead of using its default value as shown in chapter 8.3, use following properties:

- JY5320CITask.QuadEncoder.AInputTerminal – Signal A input terminal.
- JY5320CITask.QuadEncoder.ZInputTerminal – Signal Z input terminal.
- JY5320CITask.QuadEncoder.BInputTerminal – Signal B input terminal.

Learn by Examples 8.7.6

- Connect the signal source's two positive terminal to PCIe-5323 counter0's frequency measure source (CTR0_Gate/Z, Pin#35)and second signal input (CTR0_AUX/B,Pin#2) negative terminal to the ground (DGND, Pin#39)and (DGND, Pin#6). (CTR0_Gate/Z, DGND) consists of a pulse measure counter input and they share the same ground.
- Set a sinewave signal (f=10Hz, Phase=90°) and a sinewave signal (f=10Hz, Phase=0°)

Single Mode

Open Counter Input--> Winform CI Single QuadEncoder and click Start. The result is shown:

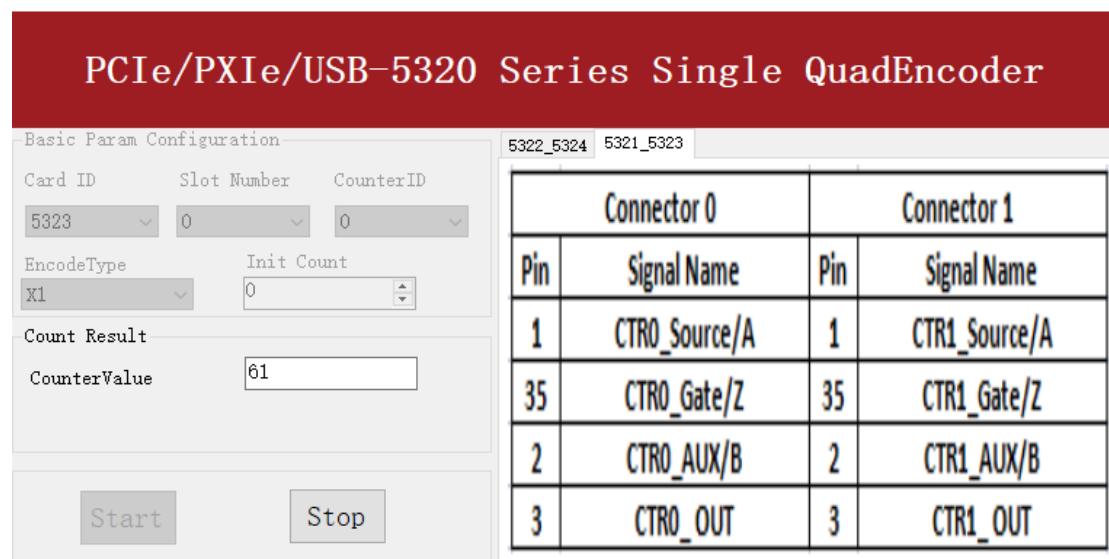


Figure 61 QuadEncoder For Single Mode

- The table in the sample program is a connection diagram for your convenience.
- Encoding Type is set by **Encode Type (x1, x2, x4)**.

- When the encode type is changed from x1 to x2 and x4, you can see the rising speed of **CounterValue** is twice and four times than x1Mode.

Continuous Mode

- Open **Counter Input--> Winform CI Continuous QuadEncoder** and click Start. The result is shown below by **CounterValues**.

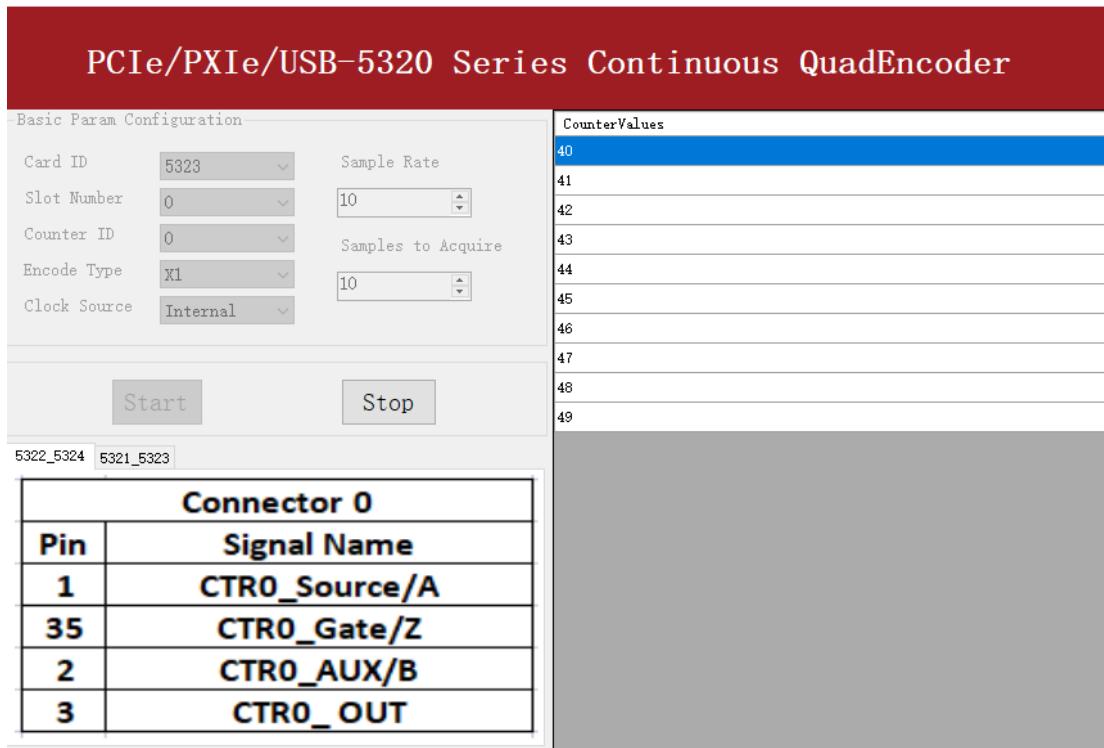


Figure 62 QuadEncoder For Continuous Mode

- The table in the sample program is a connection diagram for your convenience.
- Encoding Type is set by **Encode Type (x1, x2, x4)**.
- When the encode type is changed from x1 to x2 and x4, you can see the rising speed of **CounterValue** is twice and four times than x1Mode.

8.7.7 Two-Pulse Encoder

The count value increases on the rising edge of A signal and decreases on the rising edge of B signal. Default, the A signal must be connected to Counter A terminal, the B signal must be connected to Counter B terminal.

Set JY5320CITask.Type to CIType.TwoPulseEncoder to use this function

Timing

- 1) Single Mode

The count value is written to the register on each rising edge of the A signal, and B signal, as shown in Figure 63.

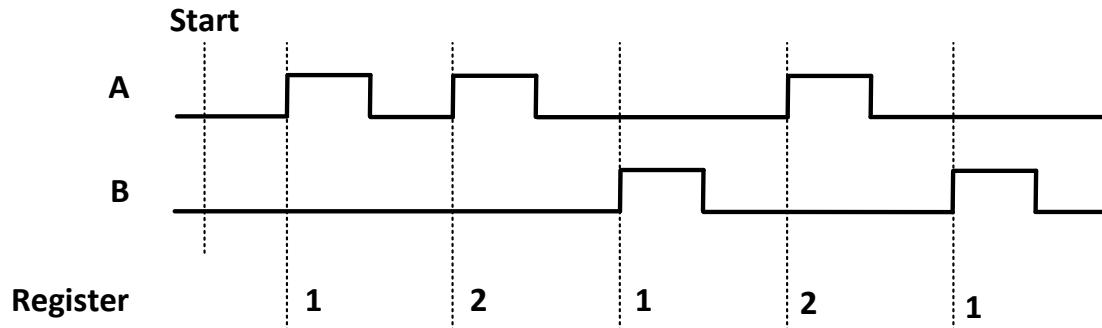


Figure 63 Two-Pulse Encoder in Single Mode

To configure the counter to work in this mode, set `JY5320CITask.Mode` to `CIMode.Single`.

2) Finite/Continuous Mode with Explicit Sample Clock

The count value is stored into the buffer on each rising edge of the sample clock, as shown in Figure 64.

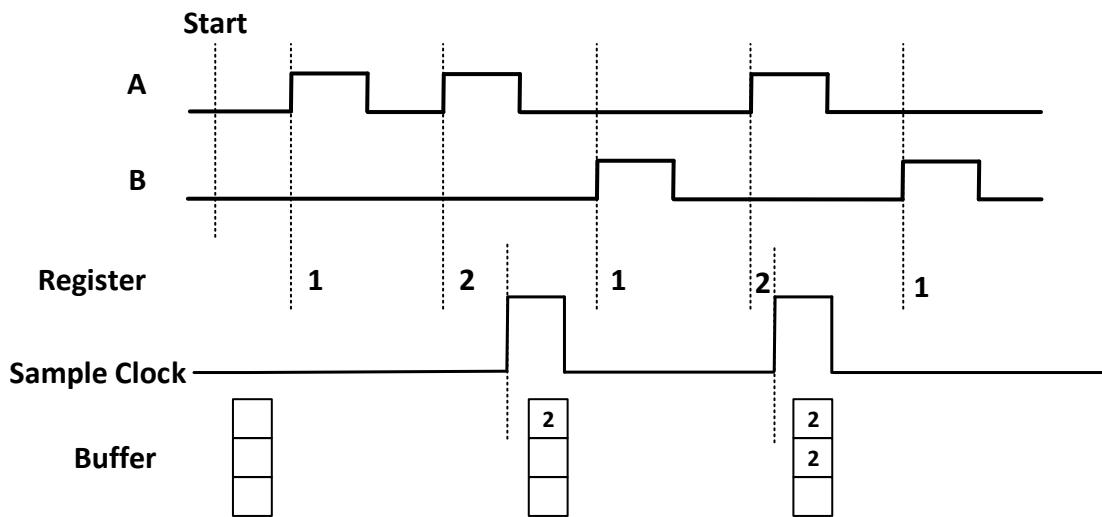


Figure 64 Two-Pulse Encoder with Explicit Sample Clock

To configure the counter to work in this mode, set `JY5320CITask.Mode` to `CIMode.Finite` or `CIMode.Continuous`, and set `JY5320CITask.SampleClock.Source` to `CISampleClockSource.Internal` or `CISampleClockSource.External`.

3) Finite/Continuous Mode with Implicit Sample Clock

In implicit mode, the signal active edge as the implicit sample clock edge. The count value is stored into the buffer on the rising edge of A signal and B signal, as shown in Figure 65.

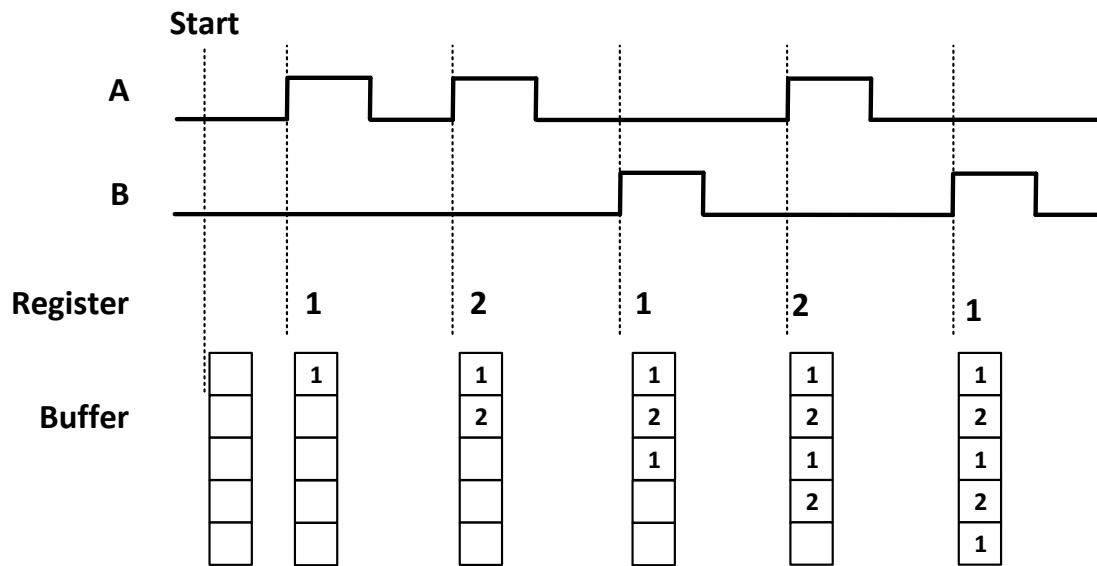


Figure 65 Two-Pulse Encoder with Implicit Sample Clock

To configure the counter to work in this mode, set JY5320CITask.Mode to CIMode.Finite or CIMode.Continuous, and set JY5320CITask.SampleClock.Source to CISampleClockSource.Implicit.

Terminals

To change the terminal of signals instead of using its default value as shown in chapter 8.3, use following properties:

- JY5320CITask.TwoPulseEncoder.AInputTerminal – Signal A input terminal.
- JY5320CITask.TwoPulseEncoder.BInputTerminal – Signal B input terminal.

Learn by Examples 8.7.7

- Connect the signal source's two positive terminal to PCIe-5323 counter0's frequency measure source (CTR0_Gate/Z, Pin#35) and second signal input (CTR0_AUX/B, Pin#2) negative terminal to the ground (DGND, Pin#39) and (DGND, Pin#6). (CTR0_Gate/Z, DGND) consists of a pulse measure counter input and they share the same ground.
- Set a squarewave signal (f=40Hz) and a squarewave signal (f=40Hz).

Single Mode

- Open Counter Input-->Winform CI Single Two PulseEncoder and set the numbers as shown.

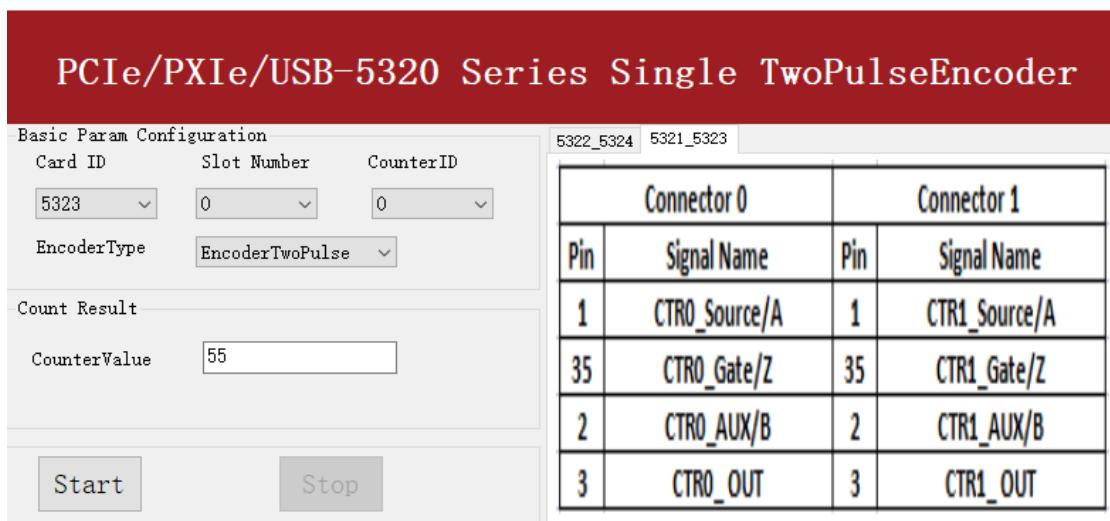


Figure 66 Two-PulseEncoder For Single Mode

- The table in the sample program is a connection diagram for your convenience.
- Click Start to **start** counting. You can see a continuously rising of the **Counter Value**, which follows the counting rules explained in this chapter.

Finite Mode

- Open **Counter Input-->Winform CI Finite Two PulseEncoder** and set the numbers as shown.

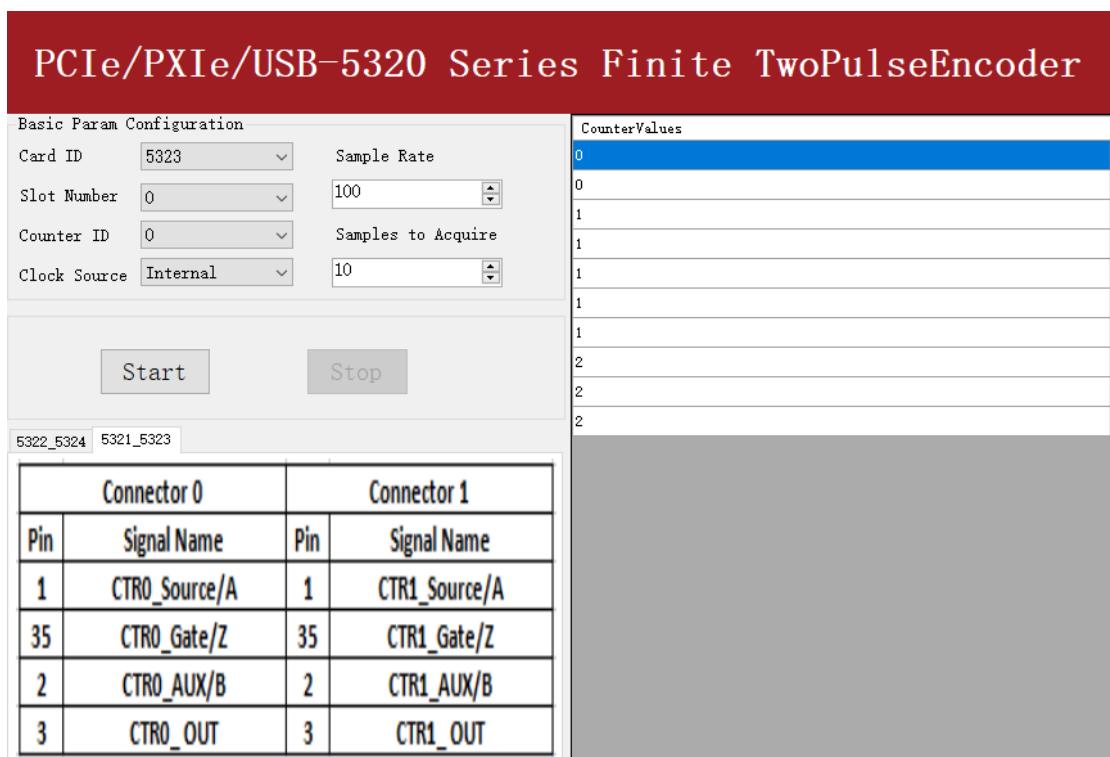


Figure 67 Two-PulseEncoder For Finite Mode

- The table in the sample program is a connection diagram for your convenience.
- Click **Start** and the result is shown above by **Counter Value** in the right list, which follows the counting rules explained in this chapter.

Continuous Mode

- Open **Counter Input-->Winform CI Continuous Two PulseEncoder** and set the numbers as shown.

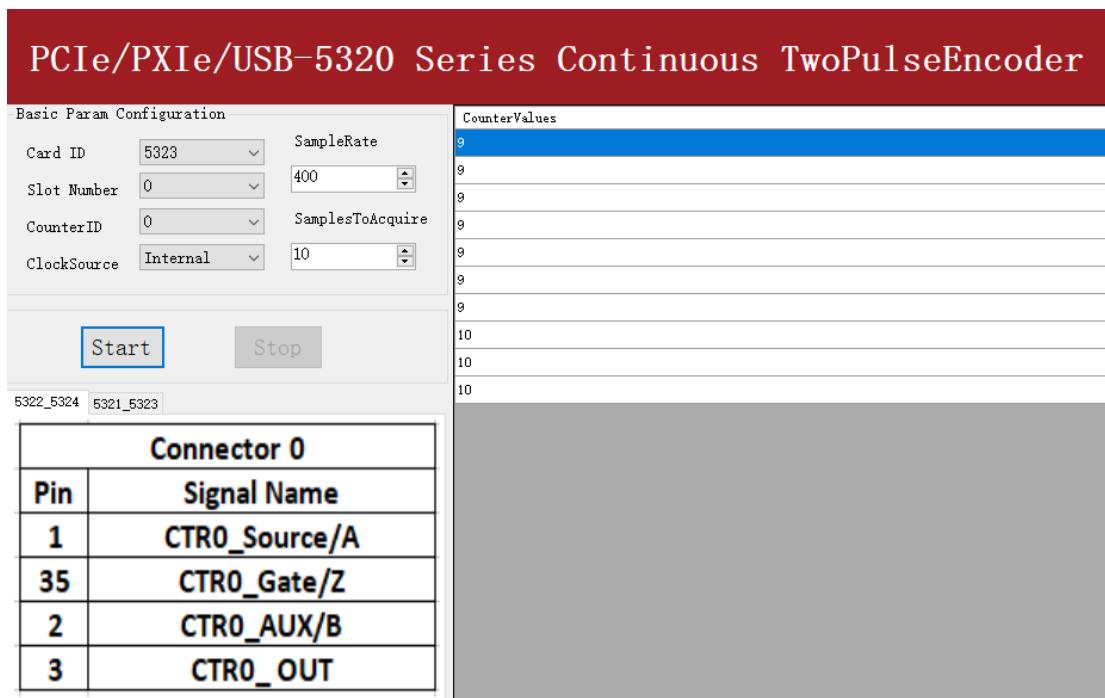


Figure 68 Two-PulseEncoder For Continuous Mode

- The table in the sample program is a connection diagram for your convenience.
- Click **Start** and you can see a group of rising numbers in **CounterValues**, which follows the counting rules explained in this chapter.

8.8 Counter Generation Operations

The JY-5321/5322/5323/5324 can generate multiple forms of output signals according to different timing modes, including:

- Pulse generation with dynamic update
- Buffered pulse sequence generation

Timing

1) Single Mode

JY5320 can output a single pulse with a specified pulse configuration. The timing diagram of the pulse output is shown in Figure 69.

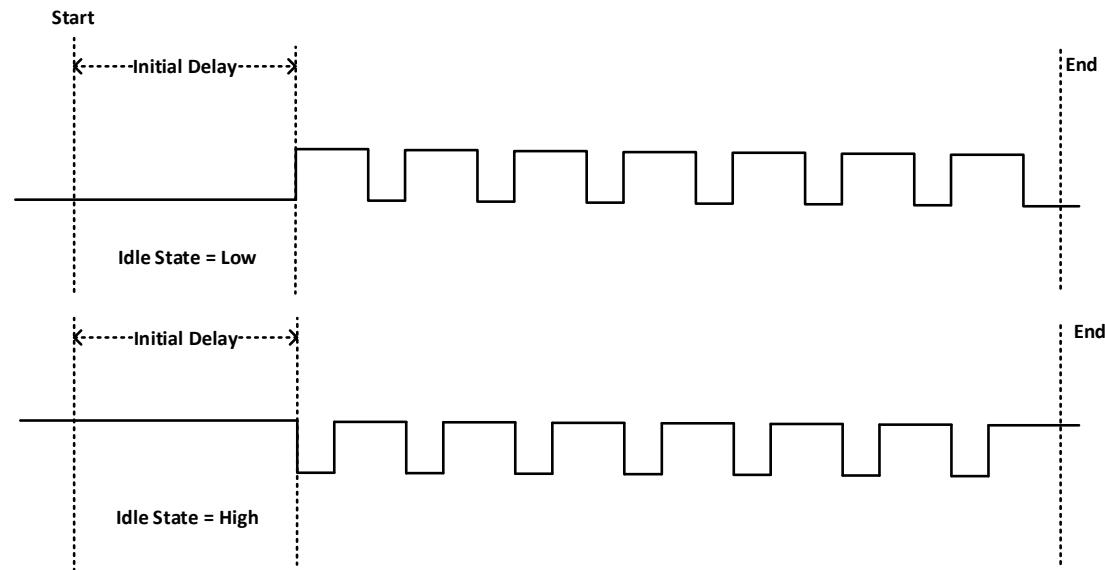


Figure 69 Pulse Output in Single Mode

Dynamic Update

If the number of pulses is set to -1, the pulses will be output continuously until requesting to stop. In this case, it is allowed to change the frequency and duty cycle on the fly. The timing diagram is shown as Figure 70.

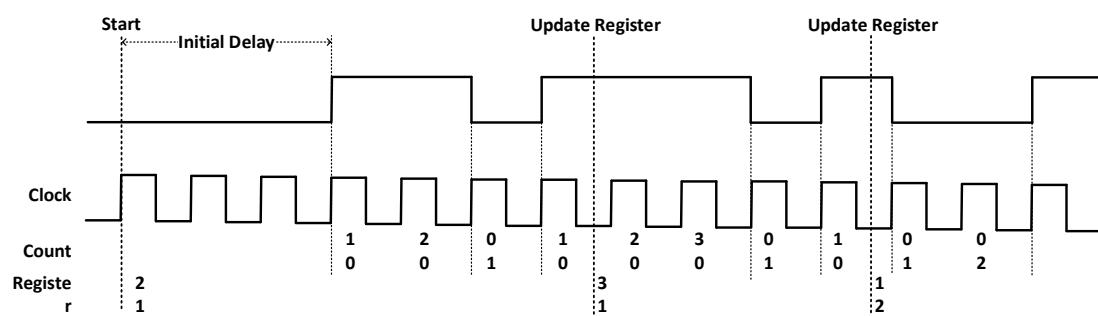


Figure 70 Pulse Output in Single Mode with Dynamic Update

Learn by Example 8.8.1

- To see the signal that JY-5323 Counter Output generates, it is recommended to connect JY-5323 Counter Output (CTR0_OUT, Pin#3) to JY5510 AI Ch0 input (AI0+, Pin#21). JY-5323 Counter GND (GND, Pin#7) to JY5510 AI Ch0 GND (Pin#55).

- Open Counter Output-->Winform CO Single and click Start and set the numbers as follow:

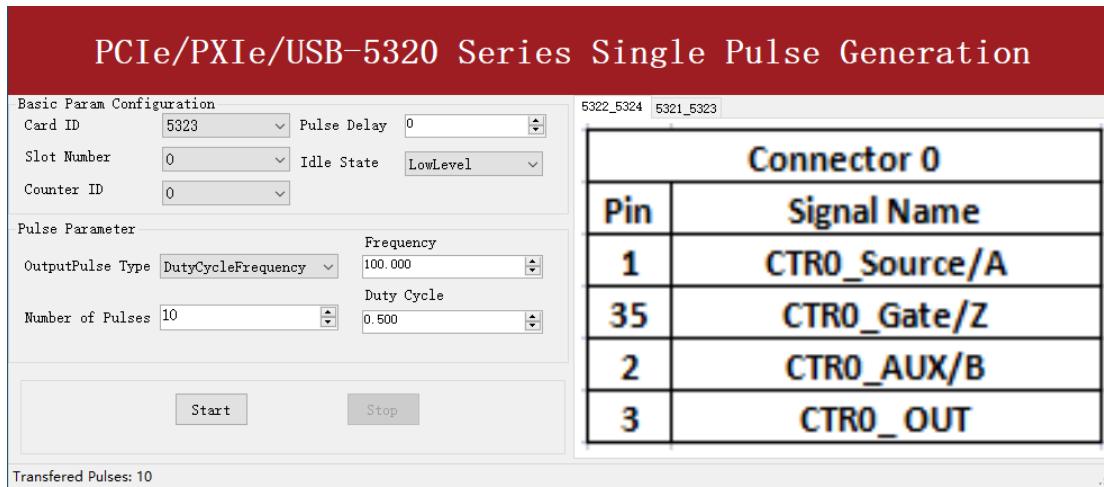


Figure 71 Single Pulse Generation

- The table in the sample program is a connection diagram for your convenience.
- The frequency and duty cycle of the pulse are set by **Frequency** and **Duty Cycle**.
- Please refer Learn by **Example 8.2** to configure an analog input to receive the signal from Counter Output.
- Click Start to generate a single pulse as shown.

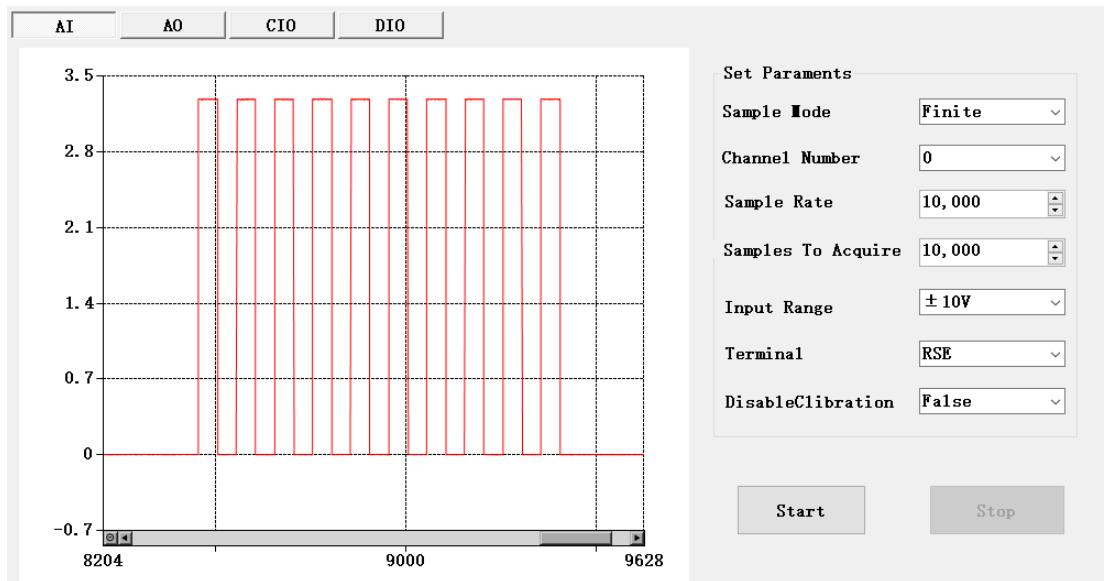


Figure 72 AI Acquisition Single Pulse

2) Finite/Continuous Mode

This mode allows the user to write all configurations of pulses to be output to the

buffer in advance. After send the currently configured pulses, the counter will automatically read the configuration of the next set of pulses to be sent from the buffer and start output. The timing diagram is shown in Figure 73.

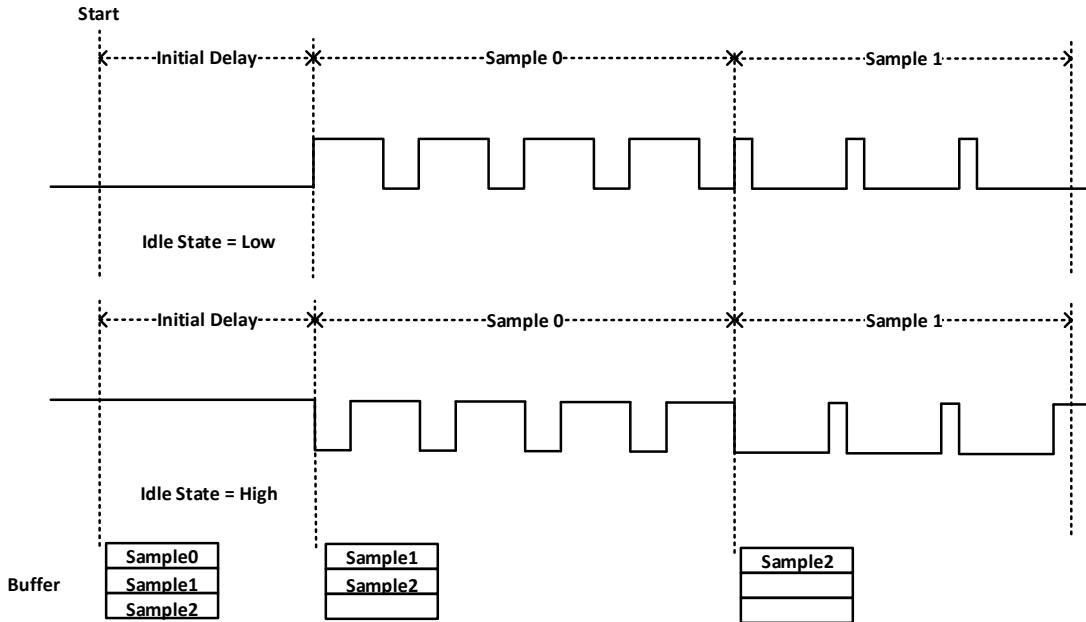


Figure 73 Buffered Pulse Sequence Generation

Each set of pulses can be configured in different ways:

- Frequency, Duty cycle and Number of pulses
- High time, Low time and Number of pulses
- High ticks, Low ticks and Number of pulses

Timebase

JY-5321/5322/5323/5324 provides four options for timebase source as follows:

- Internal 200MHz: - Same signal as the 200MHz base clock generated by PLL.
- Internal 5MHz – Generated by dividing down the 200MHz timebase.
- Internal 100kHz – Generated by dividing down the 200MHz timebase.
- External - Use a signal on a terminal as the timebase

By default, the counter uses the onboard 200MHz timebase to generate pulses. Use the property JY5320COTask.Timebase to configure the timebase.

Terminals

To change the terminal of signals instead of using its default value as shown in chapter 8.3, using following properties:

- JY5320COTask.OutputTerminal – Signal output terminal.

Learn by Example 8.8.2

- To see the signal that JY-5323 Counter Output generates, it is recommended to connect JY-5323 Counter Output (CTR0_OUT, Pin#3) to JY5510 AI Ch0 input (AI0+, Pin#21). JY-5323 Counter GND (GND, Pin#7) to JY5510 AI Ch0 GND (Pin#55).
- Open **Counter Output-->Winform CO Finite** and click Start and set the numbers as follow:

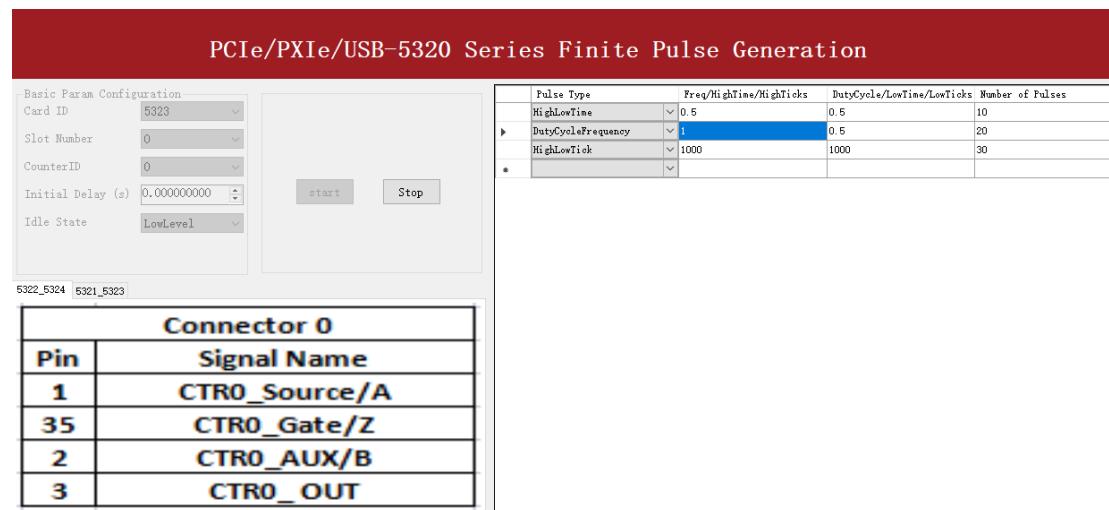


Figure 74 Finite Pulses Generation

- The table in the sample program is a connection diagram for your convenience.
- The frequency and duty cycle of the pulse are set by **Frequency** and **Duty Cycle**.
- Please refer Learn by **Example 8.2** to configure an analog input to receive the signal from Counter Output.
- Click Start to generate a single pulse as shown.

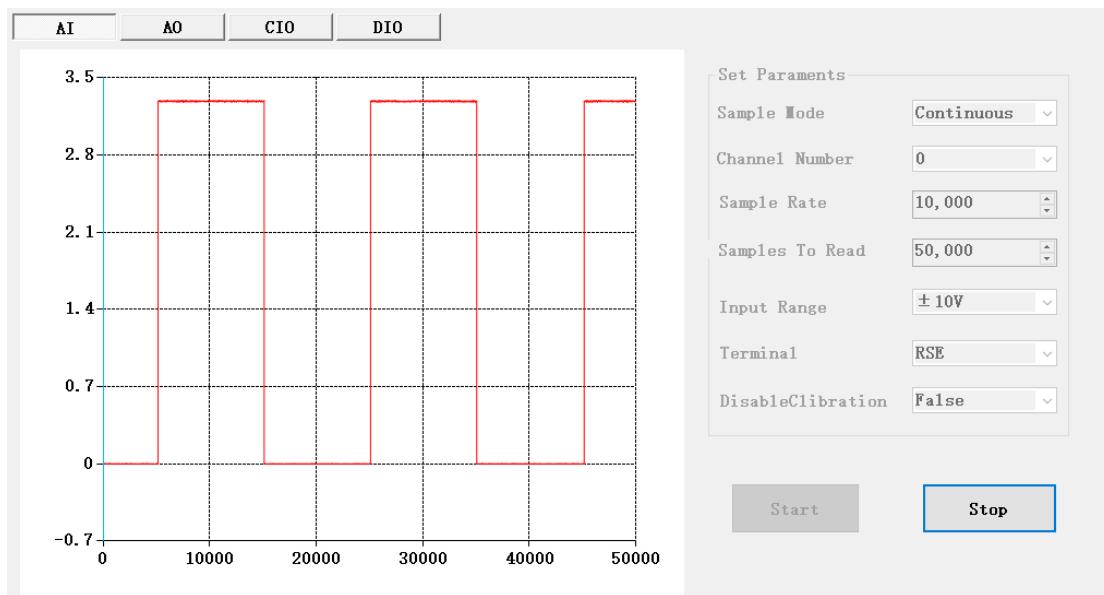


Figure 75 AI Acquisition Finite Pulse

Learn by Example 8.8.3

- To see the signal that JY-5323 Counter Output generates, it is recommended to connect JY-5323 Counter Output (CTR0_OUT, Pin#3) to JY5510 AI Ch0 input (AI0+, Pin#21). JY-5323 Counter GND (GND, Pin#7) to JY5510 AI Ch0 GND (Pin#55).
- Open **Counter Output-->Winform CO Continuous** and click Start and set the numbers as follow:

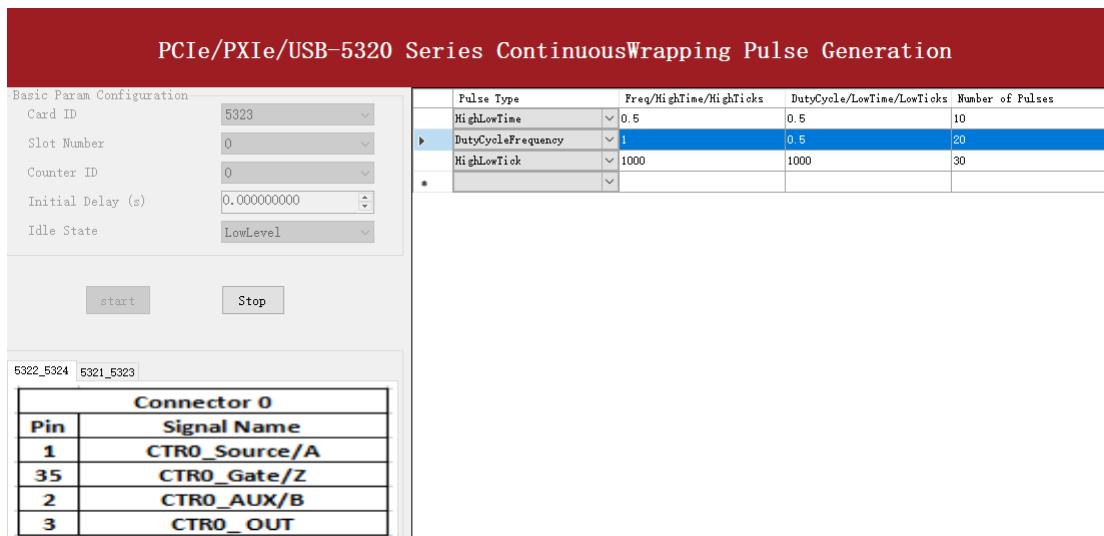


Figure 76 Continuous Pulse Generation

- The table in the sample program is a connection diagram for your convenience.
- The frequency and duty cycle of the pulse are set by **Frequency** and **Duty Cycle**.

- Please refer Learn by **Example 8.2** to configure an analog input to receive the signal from Counter Output.
- Click Start to generate a single pulse as shown.

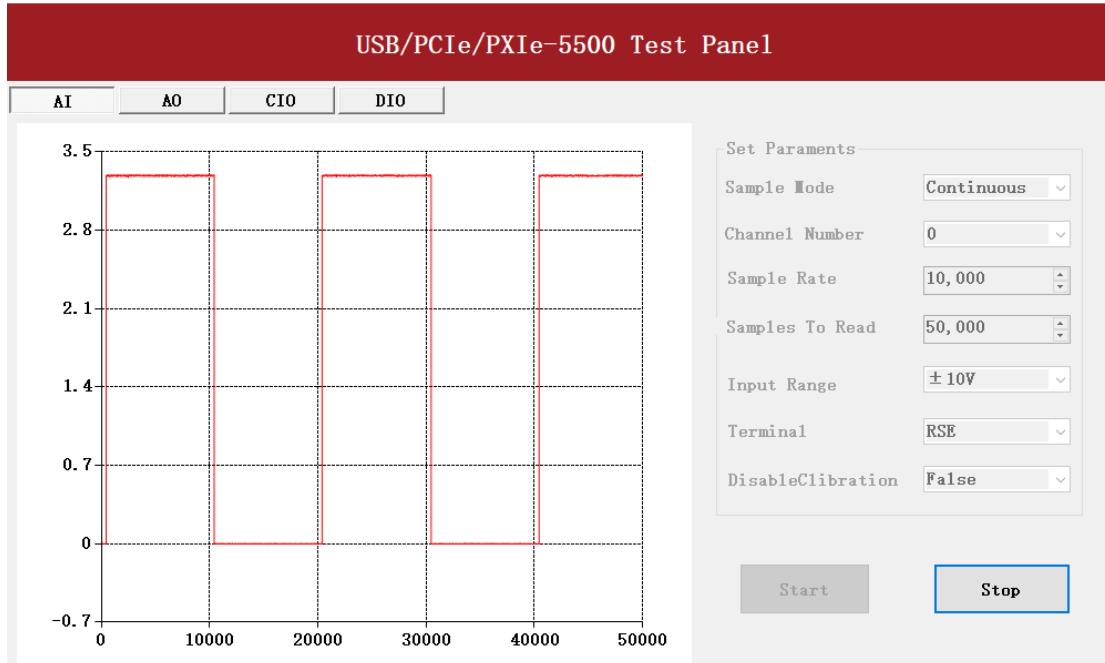


Figure 77 AI Acquisition Continuous Pulse

8.9 Multi-Devices Synchronization

The synchronization between PCIe modules is handled differently from the PXIE synchronization, it is implemented by the system synchronization interface (SSI). SSI is designed as a bidirectional bus and it can synchronize up to four PCIe modules. One PCIe module is designated as the master module and the other PCIe modules are designated as the slave modules.

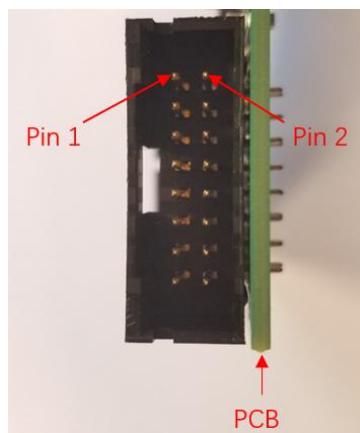


Figure 78 SSI Connector in PCIe-5320

Pin	Signal Name	Signal Name	Pin
1	PXI_TRIGGER0	GND	2
3	PXI_TRIGGER1	GND	4
5	PXI_TRIGGER2	GND	6
7	PXI_TRIGGER3	GND	8
9	PXI_TRIGGER4	GND	10
11	PXI_TRIGGER5	GND	12
13	PXI_TRIGGER6	GND	14
15	PXI_TRIGGER7	GND	16

Table 21 SSI Connector Pin Assignment for PCIe-5320

8.10 DIP Switch in PCIe-5320

PCIe-5320 series board has a DIP switch. The card number can be adjusted manually by changing the DIP switch setting, which is used to identify the boards with different slot positions.

For example, if you want to set the card number to 3, you could turn the position 2 and 1 of the DIP switch to the ON position and the others to OFF. See below for details.

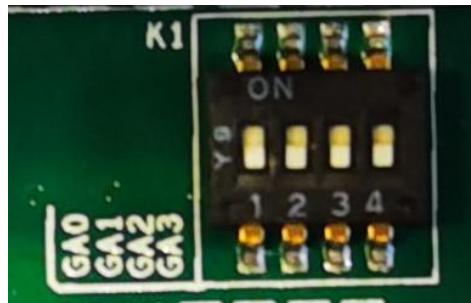


Figure 79 DIP Switch in PCIe-5310

	Position 4 (GA3)	Position 3 (GA2)	Position 2 (GA1)	Position 1 (GA0)
Slot 0	0	0	0	0
Slot 1	0	0	0	1
Slot 2	0	0	1	0
Slot 3	0	0	1	1
Slot 4	0	1	0	0
Slot 5	0	1	0	1
Slot 6	0	1	1	0
Slot 7	0	1	1	1
Slot 8	1	0	0	0
Slot 9	1	0	0	1
Slot 10	1	0	1	0
Slot 11	1	0	1	1
Slot 12	1	1	0	0
Slot 13	1	1	0	1
Slot 14	1	1	1	0
Slot 15	1	1	1	1
Note: OFF=0/ ON=1				

Table 22 Relationship between switch position and slot number

9 Calibration

JYTEK 5320 boards are precalibrated before the shipment. We recommend you recalibrate JY-5321/5322/5323/5324 boards periodically to ensure the measurement accuracy. A commonly accepted practice is one year. If you need to recalibrate your board, please contact JYTEK.

10 Appendix

10.1 Typical Measurement Error

Typical measurement error is a term used to describe the variation or uncertainty in a measurement that is repeated under the same conditions. It can be caused by random errors (chance differences between observed and true values) or systematic errors (consistent biases in measurement).

Typical measurement error can be expressed as a standard deviation (the typical error of measurement) or as a percentage of the mean (the coefficient of variation).

10.2 System Noise

System noise refers to any unwanted and random fluctuations or disturbances in a physical or electronic system that can interfere with its normal operation. System noise can arise from various sources such as electrical interference, thermal noise, environmental factors, and inherent limitations of the system's components.

In electronic systems, system noise can affect the accuracy and reliability of signal processing and communication. For example, in audio systems, system noise can lead to hissing or humming sounds, and in wireless communication systems, it can cause interference and reduce the quality of the signal.

Reducing system noise is an important consideration in the design and operation of many types of systems, and engineers use various techniques to mitigate its effects, including shielding, filtering, and signal processing algorithms.

10.3 Temperature Drift

Temperature drift refers to the phenomenon where the performance or behavior of a physical or electronic system changes as the temperature changes. Temperature drift can affect various parameters such as frequency, voltage, resistance, and sensitivity, and it can cause errors or inaccuracies in the system's operation.

In electronic systems, temperature drift can arise due to the temperature dependence of the properties of the system's components, such as resistors, capacitors, and transistors. For example, the resistance of a resistor increases with temperature, and this can affect the accuracy of voltage measurements in a circuit. Similarly, the frequency of an oscillator can drift due to the temperature dependence of its resonant circuit components.

Temperature drift is an important consideration in the design and operation of many types of systems, particularly those that require high accuracy and stability over a wide range of temperatures. Engineers use various techniques to compensate for temperature drift, including using temperature sensors to monitor and control the temperature, selecting components with low temperature coefficients, and implementing temperature compensation algorithms in software or firmware.

11 About JYTEK

11.1 JYTEK China

Founded in June, 2016, JYTEK China is a leading Chinese test & measurement company, providing complete software and hardware products for the test and measurement

industry. The company has evolved from re-branding and reselling PXI(e) and DAQ products to a fully-fledged product company. The company offers complete lines of PXI, DAQ, USB products. More importantly, JYTEK has been promoting open-sourced based ecosystem and offers complete software products. Presently, JYTEK is focused on the Chinese market. Our Shanghai headquarters and production service center have regular stocks to ensure timely supply; we also have R&D centers in Xi'an and Chongqing. We also have highly trained direct technical sales representatives in Shanghai, Beijing, Tianjin, Xi'an, Chengdu, Nanjing, Wuhan, Guangdong, Haerbin, and Changchun. We also have many partners who provide system level support in various cities.

11.2 JYTEK Software Platform

JYTEK has developed a complete software platform, SeeSharp Platform, for the test and measurement applications. We leverage the open sources communities to provide the software tools. Our platform software is also open sourced and is free, thus lowering the cost of tests for our customers. We are the only domestic vendor to offer complete commercial software and hardware tools.

11.3 JYTEK Warranty and Support Services

With our complete software and hardware products, JYTEK is able to provide technical and sales services to wide range of applications and customers. In most cases, our products are backed by a 1-year warranty. For technical consultation, pre-sale and after-sales support, please contact JYTEK of your country.

12 Statement

The hardware and software products described in this manual are provided by JYTEK China, or JYTEK in short.

This manual provides the product review, quick start, some driver interface explanation for JY-5320 family of temperature sensor data acquisition cards. The manual is copyrighted by JYTEK.

No warranty is given as to any implied warranties, express or implied, including any purpose or non-infringement of intellectual property rights, unless such disclaimer is legally invalid. JYTEK is not responsible for any incidental or consequential damages related to performance or use of this manual. The information contained in this manual is subject to change without notice.

While we try to keep this manual up to date, there are factors beyond our control that may affect the accuracy of the manual. Please check the latest manual and product information from our website.

Shanghai Jianyi Technology Co., Ltd.

Address: Room 201, Building 3, NO.300 Fangchun Road, Shanghai.

Post Code: 201203

Tel: 021-5047 5899

Website: www.jytek.com