

JY-5500 Series

Family of Multi-functional Data Acquisition Boards

Spec and Manual

Specs and Manual Version: V2.5.8

Revision Date: December 1, 2025

1. JY-5500 Specifications

1.1 Overview

The JY-5500 Series is a family of multifunction data acquisition boards, which can run on PCIe, PXIe, TXI (Thunderbolt) and USB buses. Depending on the model number, a JY-5500 series provide different AI channels, AO channels, sampling rate. USB 5500 Series only supports USB 3.0 bus mode.

⌚ Please download JYTEK [JYPEDIA](#), you can quickly inquire the product prices, the key features and available accessories.

1.2 Main Features

- High accuracy: 140 ppm
- 32 single-ended or 16 differential 18-bit analog input channels
- 18 bits of resolution
- 7 voltage ranges: $\pm 0.1V/\pm 0.2V/\pm 0.5V/\pm 1V/\pm 2V/\pm 5V/\pm 10V$
- 64M samples FIFO buffer for analog input
- 4 simultaneous 16-bit analog output channels
- 32M sample FIFO buffer for analog output
- 6 ports digital IO, 8 channels per port
- 4 general 32-bit timer/counter
- DMA for analog input and output
- Analog/Digital/Software Trigger

1.3 Hardware Specifications

1.3.1 Analog Input Specifications

Analog Input	5510	5511	5515	5516
Number of channels	32 SE / 16 DIFF		16 SE / 8 DIFF	
ADC resolution (Bits)			18	
Single channel maximum sample rate	2M Sample/s	1.25M Sample/s	2M Sample/s	1.25M Sample/s
Multichannel maximum sample rate (aggregate)	1M Sample/s	625K Sample/s	1M Sample/s	625K Sample/s
Clock		100 MHz		
Input range(V)		$\pm 10/\pm 5/\pm 2/\pm 1/\pm 0.5/\pm 0.2/\pm 0.1$		
Maximum Working Voltage(V)			± 11 V (ref. A/GND)	
Input mode			RSE / NRSE / Differential	
Input impedance			$>1 \text{ G}\Omega$ 100 pF	
Input coupling			DC	
Overvoltage protection			± 25 V	
CMRR			85 dB	
Crosstalk		Adjacent Channel : -80 dB		
		Non-adjacent Channel : -95 dB		
		Differential: -65 dB		
DNL			No Missing Code	
INL		70 ppm of Range Typical		
Input FIFO		64M Samples		
Trigger type		Digital, Analog, Software		
Trigger mode		StartTrigger, ReferenceTrigger, ReTrigger		
Analog trigger voltage range		± 10 V Software Programmable		
Overvoltage Protection		Continuous : 20mA, ± 25 V		
		Instantaneous : 40 mA, ± 25 V		

Table 1 Analog Input Specifications

1.3.2 AI Absolute Accuracy

Basic DC AI Accuracy, DAQ Mode

JY5500 Basic Accuracy = \pm(% Reading+% Range),DAQ Mode							
Nominal Range (V)	Resolution (18-bits) (uV)	24 Hour Tcal $\pm 1^{\circ}\text{C}$	90 Days Tcal $\pm 5^{\circ}\text{C}$	24 Hr Full Scale Accuracy	90 Days Full Scale Accuracy	Full Scale Accuracy (%)	Max Input Frequency @2MHz Fs (Hz)
0.1	0.8	0.005 + 0.065	0.016 + 0.093	70 uV	110 uV	0.109	140
0.2	1.5	0.003 + 0.031	0.011 + 0.046	70 uV	110 uV	0.057	70
0.5	3.8	0.001 + 0.013	0.007 + 0.019	70 uV	130 uV	0.026	30
1	7.6	0.001 + 0.008	0.006 + 0.010	90 uV	160 uV	0.016	18
2	15.3	0.001 + 0.006	0.006 + 0.008	140 uV	270 uV	0.014	14
5	38.1	0.003 + 0.007	0.008 + 0.009	480 uV	840 uV	0.017	19
10	76.3	0.003 + 0.005	0.009 + 0.006	760 uV	1500 uV	0.015	15

Valid for one channel only. 95% of Confidence Interval
 Max sampling rates for 5510,5511,5515,5516: 2M, 1.25M, 2M, 1.25M
 Add 20% to Gain and Offset Errors From 91 Days to 1 Year. Preliminary
 Accuracy valid to 95% of full range
 Source impedance $\leq 100\Omega$
 Add accuracy adjustment for temperature and multiple channels
 Max input freqency = (total accuracy/range)*Sample Rate/10, only 24 Hr. data provided
 All accuracy data in this table are tested with 1m shield cable.
 Specs subject to minor changes

Table 2 Basic DC AI Accuracy, DAQ Mode

Additional DC AI Accuracy Adjustment, DAQ Mode

JY5500 Temperature Accuracy Adjustment = \pm(% Reading+% Range)			
Nominal Range (V)	Temperature Coefficients (/ $^{\circ}\text{C}$)		Full-Scale Temp Adjustment (uV/ $^{\circ}\text{C}$)
0.1	0.0010	+	0.0025
0.2	0.0007	+	0.0013
0.5	0.0004	+	0.0006
1	0.0002	+	0.0003
2	0.0002	+	0.0002
5	0.0005	+	0.0002
10	0.0006	+	0.0002

For all sample rates
 All accuracy data in this table are tested with 1m shield cable.
 Specs subject to minor changes when more tests become available

Table 3 JY-5500 Temperature Accuracy Adjustment

JY5500 Multi-Channel Accuracy Adjustment (μV)		
Nominal Range (V)	Sample Rate (Hz) per Channel	Full-Scale Multi-Channel Adjustment (μV)
0.1	≤200 K/N	0
0.1	500 K/N	45 μV
0.1	1 M/N	98 μV
0.2	≤200 K/N	0
0.2	500 K/N	23 μV
0.2	1 M/N	136 μV
0.5	≤200 K/N	0
0.5	500 K/N	32 μV
0.5	1 M/N	314 μV
1	≤200 K/N	0
1	500 K/N	70 μV
1	1 M/N	683 μV
2	≤200 K/N	0
2	500 K/N	109 μV
2	1 M/N	904 μV
5	≤200 K/N	0
5	500 K/N	693 μV
5	1 M/N	2,904 μV
10	≤200 K/N	0
10	500 K/N	2,375 μV
10	1 M/N	5,713 μV

N: Number of channels from 2 to 32
 Use the next higher sample rate for the not listed sample rates
 1 M/N not recommended for a DC measurement.
 TB68 Terminal Block + 2m ACL-2006868-2 Cable
 Source Impedance: ≤25 Ω
 All accuracy data in this table are tested with 1m shield cable.
 Preliminary, subject to changes.

Table 4 JY-5500 Multi-Channel Accuracy Adjustment

Basic DC AI Accuracy, DS Mode

JY5510, 5515 Basic Accuracy = $\pm(\% \text{ Reading} + \% \text{ Range})$, DSMode								
Nominal Range (V)	Max Sample Rate for 1 Channel	Resolution (uV)	24 Hour Tcal $\pm 1^\circ$	90 Days Tcal $\pm 5^\circ$	24 Hr Full Scale Accuracy	90 Days Full Scale Accuracy	Full Scale Accuracy (%)	Max Input Frequency Fs (Hz)
0.1	1K	0.8	0.0024 + 0.0087	0.0052 + 0.0148	11 uV	20 uV	0.020	0.011
0.1	10K	0.8	0.0024 + 0.0106	0.0052 + 0.0166	13 uV	22 uV	0.022	0.130
1	1K	7.6	0.0008 + 0.0013	0.0029 + 0.0021	22 uV	50 uV	0.005	0.002
1	10K	7.6	0.0008 + 0.0015	0.0029 + 0.0023	23 uV	52 uV	0.005	0.023
10	1K	76.3	0.0007 + 0.0009	0.0031 + 0.0014	161 uV	453 uV	0.005	0.002
10	10K	76.3	0.0007 + 0.0010	0.0031 + 0.0015	171 uV	463 uV	0.005	0.017

Valid for one channel only. 95% of Confidence Interval
DS Mode for 5510, 5515 only
Use the next higher sample rate for not listed sample rates
Use DAQ Mode when the sample rate > 10KHz
Add 20% to Gain and Offset Errors From 91 Days to 1 Year. Preliminary
Accuracy valid to 95% of full range
Source impedance $\leq 100\Omega$
Add accuracy adjustment for temperature and multiple channels
Max input frequency = (total accuracy/range) * Sample Rate/10, only 24 Hr. data provided
All accuracy data in this table are tested with 1m shield cable.
Specs subject to minor changes when more tests become available

Table 5 Basic DC AI Accuracy, DS Mode

System Noise

Range	SystemNoise(uVrms)
0.1	51
0.2	54
0.5	54
1	55
2	80
5	120
10	190

Table 6 DC System Noise

AC Accuracy for One Channel

JY5500 Total Absolute AC Accuracy for One Channel						
	0.1V	0.2V	0.5V	1V	2V	5V
[10Hz,50K)	0.28%	0.24%	0.23%	0.22%	0.17%	0.16%
[50K,100K)	0.79%	0.66%	0.57%	0.74%	0.48%	0.39%
[100K,200K]	2.42%	2.09%	1.90%	2.12%	1.28%	1.00%

Valid for one channel measurement of sinusoidal input
90 days, $T_{cal} \pm 5^\circ C$. For one year AC accuracy, add 20%. Preliminary
Sample Rate $\geq 1.25M$. No specs for Sample Rate $< 1.25MHz$.
DC Coupling
10 V range: valid for $\pm 9.5V$
Source impedance $\leq 100\Omega$
All accuracy data in this table are tested with 1m shield cable.
95% confidence level

Table 7 AC Accuracy for One Channel

AC Accuracy for Multiple Channels

In the case where the multi-channel sampling rate is less than $200k/N$, the single-channel AC precision result is applicable.

1.3.3 Dynamic Performance

AI Bandwidth

Analog Input Bandwidth	
Nominal Range Full Scale (V)	Bandwidth (-3db,MHz)
0.1	1.21
0.2	1.21
0.5	1.21
1	1.21
2	1.72
5	2.14
10	2.06

Table 8 Analog Input Bandwidth

CMRR

Input Voltage	CMRR (DC-60Hz) (db)
0.5	98
1	95
5	84

Table 9 CMRR

Crosstalk

The crosstalk is the interference from one channel wire to another channel wire. It depends on the connection wires and internal circuit layout. In JY-5500, each differential channel has three wires, AI+, AI-, and GND. The two wires, AI+ and AI-, are interwound together. Therefore, the interference from AI+ to AI- within the same differential group has the largest crosstalk interference. Table 10 错误!未找到引用源。 shows the crosstalk specifications of between different wire configurations. Please see the pin definition in Section 4.1 to determine which wires belong to the same differential pair. To reduce the crosstalk interference, select the wires that belong to the different differential pairs whenever possible.

Wires	Crosstalk (db)
Wires within a differential pair	-65
Wires belong to different differential pairs	-80
TB-68 Terminal Block, ACL-2006868-1 1m shield cable	

Table 10 Crosstalk Specifications

1.3.4 Analog Output Specifications

Analog Output	5510	5511	5515	5516
Number of channels	4		2	
DAC resolution	16 bits			
Maximum update rate(simultaneous)	1 channel	2.86 M Sample/s		
	2 channels	2 M Sample/s		
	3 channels	1.54 M Sample/s		
	4 channels	1.25 M Sample/s		
Clock	100 MHz			
Clock accuracy	Jitter <20 ps			
Output range(V)	±10, ±5			
Output mode	RSE			
Output impedance	2 ohm			
Output coupling	DC			
Output current drive	±10 mA			
Output FIFO	32M Samples			
Trigger type	Digital, Software			
Trigger mode	StartTrigger			

Table 11 Analog Output Specifications

1.3.5 AO Absolute Accuracy

AO Accuracy

JY5500 Basic AO Accuracy = ± (% of Output + % of Range)									
Nominal Range (V)	Resolution (16-bits) (uV)	24 Hour Tcal ± 1°C	90 Days Tcal ± 5°	Temperature Coefficients(°C)	24 Hr Full-Scale Accuracy	90 Days Full-Scale Accuracy	Full Scale Accuracy (%)	Max Update Rate (S/s)	
5	153	0.006 + 0.013	0.008 + 0.014	0.0009 + 0.0005	950 uV	1100 uV	0.022	2.86M	
10	305	0.003 + 0.007	0.005 + 0.008	0.0006 + 0.0002	1000 uV	1300 uV	0.013	2.86M	
Valid for all update rates.									
Add accuracy adjustment if temperature is outside calibration temperature range.									
Accuracy valid to 99% of full range									
Maximum update rates(simultaneous)									
1 Ch: 2.86M; 2 Ch: 2M; 3 Ch: 1.54M; 4 Ch: 1.25M									
All accuracy data in this table are tested with 1m shield cable.									
Specs subject to minor changes when more tests become available.									

Table 12 AO Absolute Accuracy

1.3.6 Digital IO Specifications

DIO	5510/5511	5515/5516
Number of channels	Port (0,1,2,3,4,5)	Port (0,1,2)
Ground reference	D_GND	
Directional control	Independent control of each port	
Clock	10 MHz	
DI FIFO	16M Samples	
DO FIFO	16M Samples	
Initial state	Input	
Digital Input	Logic Low: V_{IL} Min : 0 / Max : 1.0 V	
	Logic High: V_{IH} Min : 2V / Max : 5.3V	
Digital Output	Logic Low : 0 V, I_{OL} Max: 24 mA	
	Logic High : 2.6 V~5 V, I_{OH} : -24 mA~0 mA	
Overvoltage Protection	Continuous 30 mA, -3.9 V~8.9 V Instantaneous 200 mA, ± 25 V	
	Duty cycle of instantaneous current pulse does not exceed 15%	

Table 13 Digital IO Specifications

1.3.7 Counter/Timer Specifications

CI/CO	5510	5511	5515	5516
Number of channels	4		2	
Resolution	32	bits		
Input Terminal	Gate(Z) , Source(A) , Aux(B) , Digital Trigger External Sample Clock			
Output Terminal	OUT			
Input Mode	Single,Finite,Continuous			
Input Type	Edge Counting, Period Measure, Frequency Measure, Pulse Measure, Two Edge Separation Measure, Quadrature Encoder, Two Pulse Encoder			
Internal timebase	200 MHz			
Max SampleClock	10 MHz			
Output Mode	Single,Finite and Continuous pulse			
FIFO per channel	4M Samples			

Table 14 Counter/Timer Specifications

1.3.8 Clock Accuracy

Clock Accuracy (5510 5511 5515 5516)	±20 ppm
--------------------------------------	---------

Table 15 Clock Accuracy

1.3.9 PFI Specifications

PFI	5510	5511	5515	5516
Number of channels		16		
External digital trigger interface		Trigger voltage 3.3 V TTL; trigger edge: Rising/Falling		
Initial state		Input		

Table 16 PFI Specifications

1.3.10 Power Specifications

Power	5510	5511	5515	5516
3.3V		2.09 A		2.12 A
12V		0.28 A		0.25 A

Table 17 Power Specifications

1.3.11 USB Power Supply

Power	USB-5510	USB-5511	USB-5515	USB-5516
12V			4A	

Table 18 USB Power Supply

1.3.12 Physical and Environment

Operating Environment

Ambient temperature range	0 °C to 50 °C
Relative humidity range	20% to 80%, noncondensing

Table 19 Operating Environment

Storage Environment

Ambient temperature range	-20 °C to 80 °C
Relative humidity range	10% to 90%, noncondensing

Table 20 Storage Environment

2. Order Information

- PXIe-5510 (PN: JY2005510-01)
32-ch AI (18-Bit, 2 MS/s), 4-ch AO (16-Bit, 2.86MS/s), 48 DIO, PXIe Multifunction I/O Card
- PXIe-5511 (PN: JY2005511-01)
32-ch AI (18-Bit, 1.25 MS/s), 4-ch AO (16-Bit, 2.86 MS/s), 48 DIO, PXIe Multifunction I/O Card
- PXIe-5515 (PN: JY2005515-01)
16-ch AI (18-Bit, 2 MS/s), 2-ch AO (16-Bit, 2.86MS/s), 24 DIO, PXIe Multifunction I/O Card
- PXIe-5516 (PN: JY2005516-01)
16-ch AI (18-Bit, 1.25 MS/s), 2-ch AO (16-Bit, 2.86 MS/s), 24 DIO, PXIe Multifunction I/O Card
- PCIe-5510 (PN: JY2105510-01)
32-ch AI (18-Bit, 2 MS/s), 4-ch AO (16-Bit, 2.86MS/s), 48 DIO, PCIe Multifunction I/O Card
- PCIe-5511 (PN: JY2105511-01)
32-ch AI (18-Bit, 1.25 MS/s), 4-ch AO (16-Bit, 2.86 MS/s), 48 DIO, PCIe Multifunction I/O Card
- PCIe-5515 (PN: JY2105515-01)
16-ch AI (18-Bit, 2 MS/s), 2-ch AO (16-Bit, 2.86MS/s), 24 DIO, PCIe Multifunction I/O Card
- PCIe-5516 (PN: JY2105516-01)
16-ch AI (18-Bit, 1.25 MS/s), 2-ch AO (16-Bit, 2.86 MS/s), 24 DIO, PCIe Multifunction I/O Card
- USB-5510 (PN: JY2105510-02)
32-ch AI (18-Bit, 2 MS/s), 4-ch AO (16-Bit, 2.86MS/s), 32DIO PCIe Multifunction I/O Module
- USB-5511 (PN: JY2105511-02)
32-ch AI (18-Bit, 1.25 MS/s), 4-ch AO (16-Bit, 2.86 MS/s), 32DIO PCIe Multifunction I/O Module
- USB-5515 (PN: JY2105515-02)
16-ch AI (18-Bit, 2 MS/s), 2-ch AO (16-Bit, 2.86MS/s), 24DIO PCIe Multifunction I/O Module
- USB-5516 (PN: JY2105516-02)
16-ch AI (18-Bit, 1.25 MS/s), 2-ch AO (16-Bit, 2.86 MS/s), 24DIO PCIe Multifunction I/O Module
- Accessories:
 - Cable:
 - ACL-2006868-1 1M 68pin VHDCI68M-SCSI68M cable (PN: JY2006868-01)
 - ACL-2006868-2 2M 68pin VHDCI68M-SCSI68M cable (PN: JY2006868-02)
 - Terminal Block:
 - TB-68 68-Pin SCSI Shielded I/O Connector Block (PN: JY2000068-03)
 - TB-68CI 68-Pin SCSI Shielded I/O Connector Block with 8ch current converter (PN: JY2010068-02)
 - TB-68CI-16 68-Pin SCSI Shielded I/O Connector Block with 16ch current converter (PN: JY2010068-03)

Table of Contents

1.JY-5500 Specifications	1
1.1 Overview	1
1.2 Main Features	1
1.3 Hardware Specifications	2
1.3.1 Analog Input Specifications.....	2
1.3.2 AI Absolute Accuracy	3
1.3.3 Dynamic Performance	6
1.3.4 Analog Output Specifications.....	7
1.3.5 AO Absolute Accuracy.....	8
1.3.6 Digital IO Specifications	9
1.3.7 Counter/Timer Specifications	9
1.3.8 Clock Accuracy	9
1.3.9 PFI Specifications	10
1.3.10 Power Specifications.....	10
1.3.11 USB Power Supply.....	10
1.3.12 Physical and Environment.....	10
2.Order Information.....	1
3.Introduction.....	8
3.1 Overview	8
3.2 Abbreviations	8
3.3 Learn by Example	9
4.Hardware Specifications.....	12
4.1 Front Panel.....	12
4.2 Pin Definition.....	13
4.2.1 5510/5511 Connector Pin Definition	13
4.2.2 5510/5511 Counter Pin Definition (Connector 0).....	14
4.2.3 5515/5516 Connector Pin Definition	15
4.2.4 5515/5516 Counter Pin Definition	16
4.3 AI Absolute DC Accuracy	17
4.3.1 Basic DC Accuracy, DAQ Mode	17
4.3.2 Temperature Adjustment	19
4.3.3 Multi-Channel Adjustment	19
4.3.4 Basic DC Accuracy, DS Mode.....	21
4.4 AI Absolute AC Accuracy	22
4.5 AO Absolute Accuracy.....	23
4.5.1 AO Accuracy	23
4.5.2 Additional AO Accuracy Adjustment.....	24
5.Software.....	25
5.1 System Requirements	25
5.2 System Software	25

5.3 C# Programming Language	26
5.4 JY-5500 Series Hardware Driver.....	26
5.5 Install the SeeSharpTools from JYTEK.....	26
5.6 Running C# Programs in Linux	27
6.Operating JY-5500	28
6.1 Quick Start.....	28
6.2 Data Acquisition Methods	28
6.2.1 Continuous Acquisition	31
6.2.2 Finite Acquisition	31
6.2.3 Single Point Acquisition	31
6.2.4 Record Acquisition	31
6.3 Analog Input Terminal Type.....	31
6.3.1 DIFF Mode	32
6.3.2 RSE Mode	34
6.3.3 NRSE Mode	34
6.4 Trigger Source	37
6.4.1 Immediate trigger	37
6.4.2 Software Trigger.....	38
6.4.3 External Analog Trigger.....	39
6.4.4 External Digital Trigger.....	44
6.5 Trigger Mode.....	46
6.5.1 Start Trigger	46
6.5.2 Reference Trigger.....	47
6.5.3 ReTrigger	48
6.5.4 Learn by Example 6.5	48
6.6 AO Operations.....	51
6.6.1 Finite Output	51
6.6.2 Continuous NoWrapping Output.....	54
6.6.3 Continuous Wrapping Output.....	58
6.7 Digital I/O Operations	61
6.7.1 Static DI/DO	61
6.7.2 Dynamic DI/DO	62
6.8 Counter Input Operations.....	65
6.8.1 Edge Counting	66
6.8.2 Pulse Measurement	72
6.8.3 Frequency Measurement.....	76
6.8.4 Period Measurement	79
6.8.5 Two-Edge Separation	81
6.8.6 Quadrature Encoder	86
6.8.7 Two-Pulse Encoder.....	90
6.9 Counter Output Operations.....	95

6.9.1 Single Pulse Output.....	95
6.9.2 Finite Pulse Output	97
6.9.3 Continuous Pulse Output.....	99
6.10 System Synchronization Interface (SSI) for PCIe Modules.....	101
6.11 DIP Switch in PCIe-5500	101
7.Calibration	103
8.Using JY-5500 in Other Software	104
8.1 Python	104
8.2 C++	104
8.3 LabVIEW	104
9.About JYTEK.....	105
9.1 JYTEK China	105
9.2 JYTEK Software Platform.....	105
9.3 JYTEK Warranty and Support Services	105
10.Appendix 1 Common Analog Measurement Issues.....	106
10.1 Floating Signals and Ground Referenced Signals.....	106
10.2 Differential, NRSE, RSE Modes.....	106
10.3 Reducing the Common Mode Voltage Effect	107
10.4 DC, AC and DSA Mode.....	108
10.4.1 DC Mode	108
10.4.2 AC Mode.....	109
10.4.3 DSA Mode	109
11.Statement.....	110
 Table 1 Analog Input Specifications.....	2
Table 2 Basic DC AI Accuracy, DAQ Mode	3
Table 3 JY-5500 Temperature Accuracy Adjustment.....	3
Table 4 JY-5500 Muti-Channel Accuracy Adjustment.....	4
Table 5 Basic DC AI Accuracy, DS Mode.....	5
Table 6 DC System Noise.....	5
Table 7 AC Accuracy for One Channel	6
Table 8 Analog Input Bandwidth.....	6
Table 9 CMRR	7
Table 10 Crosstalk Specifications	7
Table 11 Analog Output Specifications	8
Table 12 AO Absolute Accuracy	8
Table 13 Digital IO Specifications.....	9
Table 14 Counter/Timer Specifications	9
Table 15 Clock Accuracy.....	9
Table 16 PFI Specifications.....	10
Table 17 Power Specifications	10

Table 18 USB Power Supply	10
Table 19 Operating Environment.....	10
Table 20 Storage Environment	10
Table 21 JY-5500 Family and Main Features	8
Table 22 JY-5500 on Different Bus	8
Table 23 5510 / 5511 Pin Definition	13
Table 24 5510 / 5511 Counter Pin Define.....	14
Table 25 5515 / 5516 Pin Definition	15
Table 26 5515 / 5516 Counter Pin Define.....	16
Table 27 Notes to Legend	16
Table 28 Basic Accuracy in DAQ Mode	18
Table 29 Additional Accuracy Adjustment due to Temperature, DAQ Mode	19
Table 30 Additional Accuracy Adjustment due to Multi-Channel Mode.....	21
Table 31 Basic AI Accuracy in DSMode	22
Table 32 AC Accuracy for One Channel	23
Table 33 AO Accuracy	24
Table 34 Supported Linux Versions	25
Table 35 SSI Connector Pin Assignment for PCIe-5500	101
Table 36 Relationship between switch position and slot number	102
Table 37 DC, AC, DSA Measurements.....	108

Figure 1 JYPEDIA Information	9
Figure 2 PCIe-5500 experiment	10
Figure 3 TB-68 Terminal Block	10
Figure 4 PXIe/PCIe 5510 Front Panel	12
Figure 5 Averaging in DC Measurements	17
Figure 6 Sample Rate and Internal AD Conversion.....	29
Figure 7 Continuous MultiChannel Params.....	30
Figure 8 MultiChannel Continuous Acquisition	30
Figure 9 Differential Mode for Grounding Signals.....	32
Figure 10 Choose Differential In AI Terminal.....	33
Figure 11 RSE Mode for Floating Signals	34
Figure 12 NRSE Mode for Grounding Signals.....	35
Figure 13 Choose NRSE In AI Terminal	36
Figure 14 Immediate trigger Params.....	37
Figure 15 Software trigger Params.....	38
Figure 16 Software trigger Acquisition	39
Figure 17 Rising Slope Trigger.....	40
Figure 18 Falling Slope Trigger.....	40
Figure 19 Hysteresis with Rising Slope Trigger	41

Figure 20	Hysteresis with Falling Slope Trigger	41
Figure 21	Entering Window Trigger	42
Figure 22	Leaving Window Trigger	42
Figure 23	Analog Trigger Params.....	43
Figure 24	Waiting For Trigger	43
Figure 25	Analog Trigger Acquisition	44
Figure 26	External Digital Trigger.....	44
Figure 27	Digital Trigger Params	45
Figure 28	Digital Trigger Acquisition	46
Figure 29	Start Trigger	47
Figure 30	Reference Trigger.....	48
Figure 31	ReTrigger	48
Figure 32	Retrigger Params	49
Figure 33	Retrigger In Start Trigger Mode	50
Figure 34	Retrigger In Reference Trigger Mode	50
Figure 35	Complete Retrigger Count	51
Figure 36	AI Continuous Params	52
Figure 37	AO Finite Output Params.....	53
Figure 38	AO Finite Signal	53
Figure 39	AI Acquisition Signal.....	54
Figure 40	AI Continuous Params	55
Figure 41	AO ContinuousNoWrapping Output Params	56
Figure 42	AO ContinuousNoWrapping Signal	56
Figure 43	AI Acquisition AO Sin Signal	57
Figure 44	Update AO Square Signal	57
Figure 45	AI Acquisition AO Square Signal.....	58
Figure 46	AI Continuous Params	59
Figure 47	AO Continuous Wrapping Params.....	59
Figure 48	AO Continuous Wrapping Signal.....	60
Figure 49	AI Acquisition AO Signal.....	60
Figure 50	Single Digital Output	61
Figure 51	Single Digital Input	62
Figure 52	DI Continuous Params	63
Figure 53	DO ContinuousNoWrapping Output.....	63
Figure 54	DI Continuous Acquisition.....	64
Figure 55	Counter Terminal	65
Figure 56	Counter Signal Wiring Instruction.....	65
Figure 57	Simple Edge Counting in Single Mode	66
Figure 58	Buffered Edge Counting with Internal Sample Clock.....	66
Figure 59	Simple Edge Counting with Implicit SampleClk	67
Figure 60	Pause Trigger.....	67

Figure 61	Count Direction	68
Figure 62	EdgeCounting For Single Mode.....	69
Figure 63	EdgeCounting For Finite Mode	70
Figure 64	Counter Values For Internal Clock	70
Figure 65	Counter Values For Implicit Clock.....	71
Figure 66	Pulse Measurement in Single Mode	72
Figure 67	Pulse Measurement with Internal SampleClk	72
Figure 68	Pulse Measurement with Implicit SampleClk	73
Figure 69	Pulse Measure For Single Mode	74
Figure 70	Pulse Measure Value For Single Mode	74
Figure 71	Pulse Measure For Finite Mode.....	75
Figure 72	Pulse Measure Values For Finite Mode	75
Figure 73	Frequency Measurement with Internal Sample Clock	77
Figure 74	Frequency Measure For Single Mode	78
Figure 75	Frequency Measure For Continuous Mode	79
Figure 76	Frequency Measure Values	79
Figure 77	Peroid Measure For Single Mode	80
Figure 78	Peroid Measure For Continuous Mode	81
Figure 79	Two-Edge Separation in Single Mode	82
Figure 80	Two-Edge Separation with Internal Sample Clock.....	82
Figure 81	Two-Edge Separation with Implicit Sample Clock	83
Figure 82	Two-EdgeSeparation Measure For Single Mode	84
Figure 83	Two-EdgeSeparation Measure For Finite Mode.....	85
Figure 84	Quadrature Encoder x1 Mode	86
Figure 85	Quadrature Encoder x2 Mode	86
Figure 86	Quadrature Encoder x4 mode	87
Figure 87	Quadrature Encoder x1 with Sample Clock	87
Figure 88	Quadrature Encoder x4 with Implicit Sample Clock	88
Figure 89	QuadEncoder For Single Mode	89
Figure 90	QuadEncoder For Continuous Mode	89
Figure 91	Two-Pulse Encoder in Single Mode	90
Figure 92	Two-Pulse Encoder with Internal Sample Clock	91
Figure 93	Two-Pulse Encoder with Implicit Sample Clock	91
Figure 94	Two-PulseEncoder For Single Mode	92
Figure 95	Two-PulseEncoder For Finite Mode.....	93
Figure 96	Two-PulseEncoder For Continuous Mode	94
Figure 97	Single Pulse Output.....	95
Figure 98	Single Pulse Generation	96
Figure 99	AI Acquisition Single Pulse	96
Figure 100	Finite Pulse Output	97
Figure 101	Finite Pulses Generation	97

Figure 102	AI Acquisition Finite Pulse.....	98
Figure 103	Continuous Pulse Output.....	99
Figure 104	Continuous Pulse Generation	99
Figure 105	AI Acquisition Continuous Pulse	100
Figure 106	SSI Connector in PCIe-5500.....	101
Figure 107	DIP Switch in PCIe-5500.....	102
Figure 108	Six Measurement Scenarios.....	106
Figure 109	Using Resister to Reduce Common Mode Voltage Effect	107
Figure 110	DC, AC and DSA Mode	108

3. Introduction

This chapter presents the information how to use this manual and how to quick start if you are already familiar with Microsoft Visual Studio and C# programming language.

3.1 Overview

The JY-5500 Series is a family of multifunction data acquisition boards, which can run on PCIe, PXIe, TXI(Thunderbolt) and USB buses. Depending on the model number, a JY-5500 series provide different AI channels, AO channels, sampling rate as shown in Table 21.

55xx Model	AI Channels	Sample Rate (MS/s)	AI Resolution	AO Channels	AO Update Rate (MS/s)	DIO+PFI
5510	32	2	18	4	2.86	48
5511	32	1.25	18	4	2.86	48
5515	16	2	18	2	2.86	24
5516	16	1.25	18	2	2.86	24

Table 21 JY-5500 Family and Main Features

55xx Model	PCIe	PXIe	TXI	USB
5510	✓	✓	✓	✓
5511	✓	✓	✓	✓
5515	✓	✓	✓	✓
5516	✓	✓	✓	✓

Table 22 JY-5500 on Different Bus

Please check with JYTEK for the latest JY-5500 series offering.

3.2 Abbreviations

- AI: Analog Input
- AO: Analog Output
- DI: Digital Input
- DO: Digital Output
- CI: Counter Input
- CO: Counter Output
- DAQ: Data AcQuisition
- ADC: Analog-to-Digital Conversion
- DAC: Digital-to-Analog Conversion

-
- PFI: Programmable Function Interface
 - SE: Single-Ended
 - RSE: Referenced Single-Ended
 - NRSE: Non-Referenced Single-Ended
 - DIFF: Differential
 - PPM: Parts Per Million
 - DAQ Mode: Common Data Acquisition Mode
 - DS Mode: Digital Signal Processing Mode

3.3 Learn by Example

JYTEK has added **Learn by Example** in this manual. We provide many sample programs for this device. Please download the sample programs for this device. You can download a [JYPEDIA](#) excel file from our web www.jytek.com. Open JYPEDIA and search for JY-5500 in the driver sheet, select **JY-5500 Examples.zip**. In addition to the download information, JYPEDIA also has a lot of other valuable information, JYTEK highly recommend you use this file to obtain information from JYTEK.

Drivers	Update Date	Category
JY5500 V4.0.4 Linux.tar	2022/2/18	Driver
JY5500 V4.0.3 Win.zip	2022/2/18	Driver
JY5500 V4.0.3 Examples.zip	2022/2/18	Example
JY5500 V4.0.3 C++Examples.zip	2022/2/18	Example
JY5500 V1.0.2 Python.zip	2021/10/29	Driver
JY5500 V1.0.2 PythonExamples.zip	2021/10/29	Example
JY5500 V4.0.0 LV.zip	2021/9/10	Driver

Figure 1 JYPEDIA Information

In a **Learn by Example** section, the sample program is in bold style such as **Analog Input-->Winform AI Continuous MultiChannel Soft Trigger**; the property name in the sample program is also in bold style such as **SamplesToAcquire**; the technical names used in the manual is in italic style such as *SampleRate*. You can easily relate the property names in the example program with the manual documentation.

In an **Learn by Example** section, the experiment is set up as follow. A PCIe-5500 card is plugged in a desktop computer. The PCIe-5500 is connected to a TB-68 terminal block. A signal source is also connected to the same terminal block as shown Figure 2.

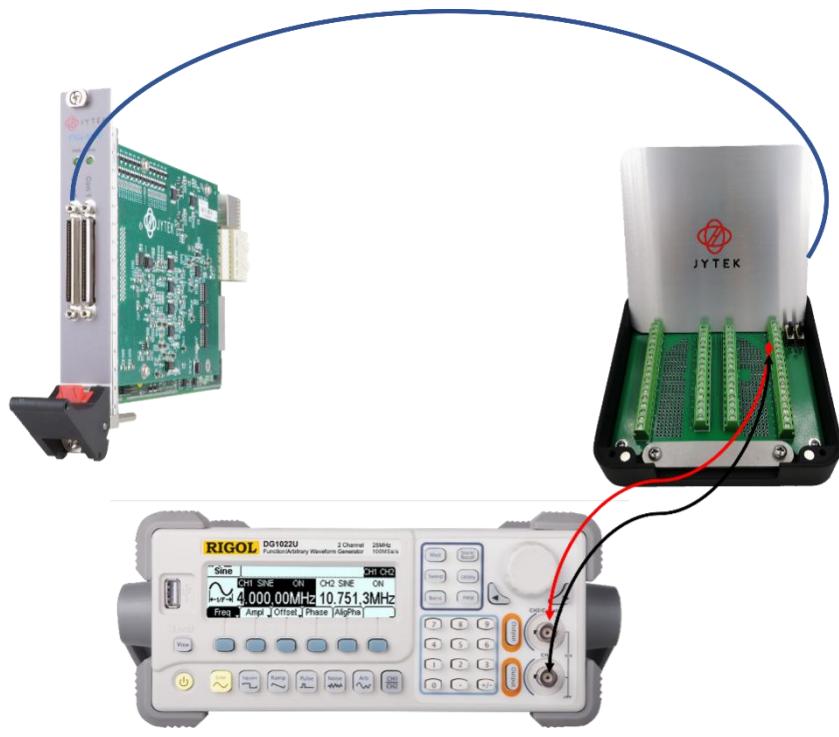


Figure 2 PCIe-5500 experiment

The TB-68 has 4 terminal columns, J1 – J4 and is shown below as Figure 3. In the rest of this manual, the wire connection in each **Learn by Example** section will be given by the pin numbers only.

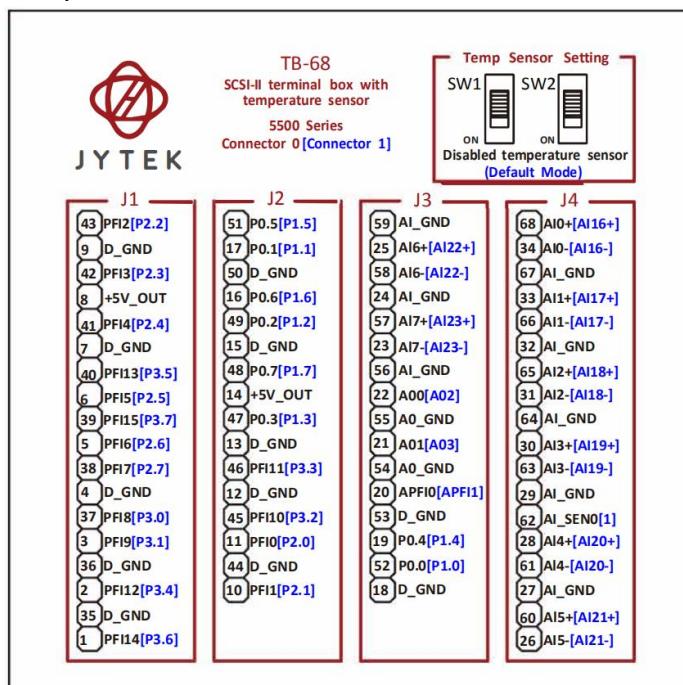


Figure 3 TB-68 Terminal Block

*Tip: JY-5500 also has the analog output capability. If you do not have a signal source, you can use the outputs of JY-5500 as the signal source. In this case you need first run example program **Analog Output-->Winform AO Continuous Wrapping Multichannel** to generate the output.*

4. Hardware Specifications

4.1 Front Panel

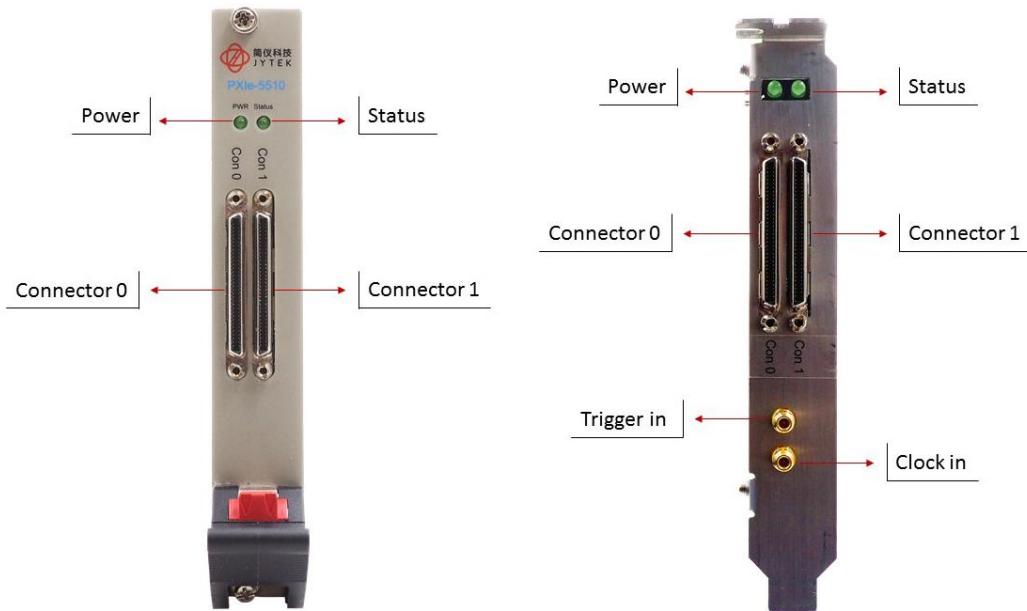


Figure 4 PXIe/PCIe 5510 Front Panel

JY-5500 series boards are connected to outside signals by either two 68-pin cables for the 32 channel configurations or one 68-pin cable for 16 channel configurations. Table 23, Table 24, Table 25, Table 26 show the pin definitions for 32 channels and 16 channels of JY-5500 series boards respectively. Please note that pin definition of connector 0 and 1 is different!

Please also note, for a 32-channel device in DIFF mode, the 16 analog input channels are 0~7 and 16~23.

4.2 Pin Definition

4.2.1 5510/5511 Connector Pin Definition

Connector 0				Connector 1			
Pin	Signal Name	Pin	Signal Name	Pin	Signal Name	Pin	Signal Name
1	PFI 14 /P5.6/DO_ECLK	35	D_GND	1	P3.6	35	D_GND
2	PFI 12/P5.4	36	D_GND	2	P3.4	36	D_GND
3	PFI 9/P5.1	37	PFI 8/P5.0	3	P3.1	37	P3.0
4	D_GND	38	PFI 7/P4.7	4	D_GND	38	P2.7
5	PFI 6 /P4.6/ AO_ECLK	39	PFI 15/P5.7	5	P2.6	39	P3.7
6	PFI 5/P4.5	40	PFI 13/P5.5	6	P2.5	40	P3.5
7	D_GND	41	PFI 4/P4.4	7	D_GND	41	P2.4
8	+5V_OUT	42	PFI 3/P4.3	8	+5V_OUT	42	P2.3
9	D_GND	43	PFI 2 /P4.2/AI_ECLK	9	D_GND	43	P2.2
10	PFI 1/P4.1	44	D_GND	10	P2.1	44	D_GND
11	PFI 0/P4.0	45	PFI10 /P5.2/DI_ECLK	11	P2.0	45	P3.2
12	D_GND	46	PFI 11/P5.3	12	D_GND	46	P3.3
13	D_GND	47	P0.3	13	D_GND	47	P1.3
14	+5V_OUT	48	P0.7	14	+5V_OUT	48	P1.7
15	D_GND	49	P0.2	15	D_GND	49	P1.2
16	P0.6	50	D_GND	16	P1.6	50	D_GND
17	P0.1	51	P0.5	17	P1.1	51	P1.5
18	D_GND	52	P0.0	18	D_GND	52	P1.0
19	P0.4	53	D_GND	19	P1.4	53	D_GND
20	NC*	54	AO_GND	20	NC*	54	AO_GND
21	AO 1	55	AO_GND	21	AO 3	55	AO_GND
22	AO 0	56	AI_GND	22	AO 2	56	AI_GND
23	AI 15 (AI 7-)	57	AI 7 (AI 7+)	23	AI 31 (AI 23-)	57	AI 23 (AI 23+)
24	AI_GND	58	AI 14 (AI 6-)	24	AI_GND	58	AI 30 (AI 22-)
25	AI 6 (AI 6+)	59	AI_GND	25	AI 22 (AI 22+)	59	AI_GND
26	AI 13 (AI 5-)	60	AI 5 (AI 5+)	26	AI 29 (AI 21-)	60	AI 21 (AI 21+)
27	AI_GND	61	AI 12 (AI 4-)	27	AI_GND	61	AI 28 (AI 20-)
28	AI 4 (AI 4+)	62	AI_SENSE 0	28	AI 20 (AI 20+)	62	AI_SENSE 1
29	AI_GND	63	AI 11 (AI 3-)	29	AI_GND	63	AI 27 (AI 19-)
30	AI 3 (AI 3+)	64	AI_GND	30	AI 19 (AI 19+)	64	AI_GND
31	AI10 (AI 2-)	65	AI 2 (AI 2+)	31	AI26 (AI 18-)	65	AI 18 (AI 18+)
32	AI_GND	66	AI 9 (AI 1-)	32	AI_GND	66	AI 25 (AI 17-)
33	AI 1 (AI 1+)	67	AI_GND	33	AI 17 (AI 17+)	67	AI_GND
34	AI 8 (AI 0-)	68	AI 0 (AI 0+)	34	AI 24 (AI 16-)	68	AI 16 (AI 16+)

Table 23 5510 / 5511 Pin Definition

* NC: Not Connected

4.2.2 5510/5511 Counter Pin Definition (Connector 0)

Pin	Signal Name	Pin	Signal Name
11	CTR0_Source/A	42	CTR1_Source/A
10	CTR0_Gate/Z	41	CTR1_Gate/Z
43	CTR0_AUX/B	6	CTR1_AUX/B
2	CTR0_OUT	40	CTR1_OUT
5	CTR2_Source/A	3	CTR3_Source/A
38	CTR2_Gate/Z	45	CTR3_Gate/Z
37	CTR2_AUX/B	46	CTR3_AUX/B
1	CTR2_OUT	39	CTR3_OUT

Table 24 5510 / 5511 Counter Pin Define

4.2.3 5515/5516 Connector Pin Definition

Connector 0			
Pin	Signal Name	Pin	Signal Name
1	PFI14/P2.6/DO_ELCK	35	D_GND
2	P2.4/PFI12	36	D_GND
3	P2.1/PFI9	37	P2.0/PFI8
4	D_GND	38	P1.7/PFI7
5	P1.6/PFI6/AO_ELCK	39	P2.7/PFI15
6	P1.5/PFI5	40	P2.5/PFI13
7	D_GND	41	P1.4/PFI4
8	+5V_OUT	42	P1.3/PFI3
9	D_GND	43	P1.2/PFI2/AI_ECLK
10	P1.1/PFI1	44	D_GND
11	P1.0/PFI0	45	P2.2/PFI10/DI_ECLK
12	D_GND	46	P2.3/PFI11
13	D_GND	47	P0.3
14	+5V_OUT	48	P0.7
15	D_GND	49	P0.2
16	P0.6	50	D_GND
17	P0.1	51	P0.5
18	D_GND	52	P0.0
19	P0.4	53	D_GND
20	NC*	54	AO_GND
21	AO 1	55	AO_GND
22	AO 0	56	AI_GND
23	AI 15 (AI 7-)	57	AI 7 (AI 7+)
24	AI_GND	58	AI 14 (AI 6-)
25	AI 6 (AI 6+)	59	AI_GND
26	AI 13 (AI 5-)	60	AI 5 (AI 5+)
27	AI_GND	61	AI 12 (AI 4-)
28	AI 4 (AI 4+)	62	AI_SENSE
29	AI_GND	63	AI 11 (AI 3-)
30	AI 3 (AI 3+)	64	AI_GND
31	AI10 (AI 2-)	65	AI 2 (AI 2+)
32	AI_GND	66	AI 9 (AI 1-)
33	AI 1 (AI 1+)	67	AI_GND
34	AI 8 (AI 0-)	68	AI 0 (AI 0+)

Table 25 5515 / 5516 Pin Definition

* NC: Not Connected

4.2.4 5515/5516 Counter Pin Definition

Pin	Signal Name	Pin	Signal Name
11	CTR0_Source/A	42	CTR1_Source/A
10	CTR0_Gate/Z	41	CTR1_Gate/Z
43	CTR0_AUX/B	6	CTR1_AUX/B
37	CTR0_OUT	3	CTR1_OUT

Table 26 5515 / 5516 Counter Pin Define

Notes to Legend in the Pin Definitions

AI_GND	Analog Input Reference Ground
AI<0..31>	Analog Input Channel
AI SENSE	Analog Input Signal, Suitable for NRSE mode
AO_GND	Analog Output Reference Ground
AO<0..3>	Analog Output Channel
D_GND	Digital Signal Reference Ground
P<0..3>.<0..7>	Digital I/O Channel
PFI<0..15>	Programmable Function Interface
+5V_OUT	5V power supply

Table 27 Notes to Legend

4.3 AI Absolute DC Accuracy

4.3.1 Basic DC Accuracy, DAQ Mode

The DC measurement refers to measuring a signal, which either is a DC source or has extremely slow frequency such that the signal voltage changes very little in the measurement window. Please note, the averaging can only be useful if the signal does not change in the averaging window as shown on the left of Figure 5 Averaging in DC Measurements. The noise is greatly reduced, and an accurate measurement is made after averaging.

But if the signal changes in the averaging windows as shown on the right of Figure 5 Averaging in DC Measurements, the result will be the average of both the signal and the noise. While the noise is reduced as before, the averaging of the signal introduces the measurement error. **You cannot use the averaging method if your signal changes in the averaging window!**

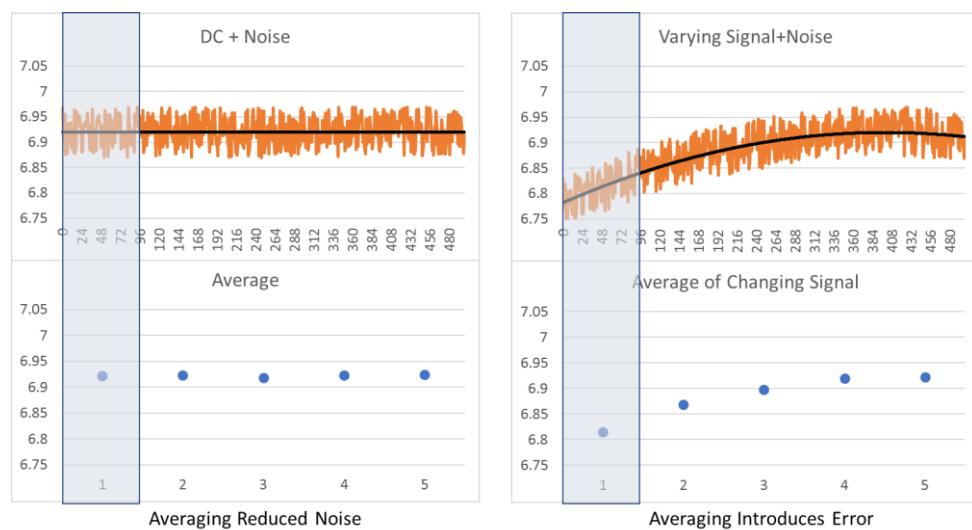


Figure 5 Averaging in DC Measurements

Table 28 also listed the maximum source signal frequency using the 24 Hr. Column accuracy at the maximum 2MHz sample rate. You can use this number for other calibration columns. But if you have other sample rate or the temperature or multiple-channel adjustment, you should use

$$f = \frac{\text{Total Accuracy}}{10 * \text{Range}} f_s$$

to calculate the maximum source frequency. The formulas are same for the DAQ and DS Mode.

The DAQ mode is the normal data acquisition mode commonly found in commercial DAQ hardware. The basic AI DC accuracy Table 28 of the DAQ mode provides accuracy entries when JY-5500 operates in the single channel mode and within the indicated calibration temperature range. Please note that this accuracy is valid for every single point regardless how many sample points you acquire.

Each entry in the basic accuracy table is a pair of gain and offset coefficients. Using these gain and offset coefficients, your measurement accuracy can be calculated by following formula:

$$Accuracy = \pm(\% \text{ of Reading} + \% \text{ of Range})$$

For example, at the 0.1V range and 24 Hours column, if your measurement or reading is 0.02V, the accuracy of this measurement is:

$$\pm(0.005\% * 0.02 + 0.065\% * 0.1) = \pm0.000066V = \pm66\mu V$$

The basic accuracy table also provides full-scale accuracy entries for a quick and convenient look-up. For example, the full-scale accuracy for the 0.1V range and the 24-Hour calibration column is 70 uV.

JY5500 Basic Accuracy = $\pm(\% \text{ Reading} + \% \text{ Range})$, DAQ Mode									
Nominal Range (V)	Resolution (18-bits) (uV)	24 Hour Tcal $\pm 1^\circ C$	90 Days Tcal $\pm 5^\circ C$	24 Hr Full Scale Accuracy	90 Days Full Scale Accuracy	Full Scale Accuracy (%)	Max Input Frequency @ 2MHz	Fs (Hz)	
0.1	0.8	0.005 + 0.065	0.016 + 0.093	70 uV	110 uV	0.109	140		
0.2	1.5	0.003 + 0.031	0.011 + 0.046	70 uV	110 uV	0.057	70		
0.5	3.8	0.001 + 0.013	0.007 + 0.019	70 uV	130 uV	0.026	30		
1	7.6	0.001 + 0.008	0.006 + 0.010	90 uV	160 uV	0.016	18		
2	15.3	0.001 + 0.006	0.006 + 0.008	140 uV	270 uV	0.014	14		
5	38.1	0.003 + 0.007	0.008 + 0.009	480 uV	840 uV	0.017	19		
10	76.3	0.003 + 0.005	0.009 + 0.006	760 uV	1500 uV	0.015	15		

Valid for one channel only. 95% of Confidence Interval
 Max sampling rates for 5510, 5511, 5515, 5516: 2M, 1.25M, 2M, 1.25M
 Add 20% to Gain and Offset Errors From 91 Days to 1 Year. Preliminary
 10 V range: valid for $\pm 9.5V$
 Source impedance $\leq 100\Omega$
 Add accuracy adjustment for temperature and multiple channels
 Max input frequency = (total accuracy/range)*Sample Rate/10, only 24 Hr. data provided
 All accuracy data in this table are tested with 1m shield cable.
 Specs subject to minor changes

Table 28 Basic Accuracy in DAQ Mode

4.3.2 Temperature Adjustment

The temperature adjustment is needed when the operating temperature is outside the calibration temperature range, such as the $T_{cal} \pm 1^\circ C$ range, or the $T_{cal} \pm 5^\circ C$ range etc. The temperature coefficients, both the gain and offset coefficients, are provided. These coefficients must be added to the gain and offset coefficients in the basic accuracy table to calculate the accuracy. Table 29 is the additional AI accuracy adjustment table due to the operating temperatures.

JY5500 Temperature Accuracy Adjustment = $\pm(\% \text{ Reading} + \% \text{ Range})$				
Nominal Range (V)	Temperature Coefficients ($^\circ C$)		Full-Scale Temp Adjustment (uV/ $^\circ C$)	
0.1	0.0010	+	0.0025	3 uV
0.2	0.0007	+	0.0013	4 uV
0.5	0.0004	+	0.0006	5 uV
1	0.0002	+	0.0003	6 uV
2	0.0002	+	0.0002	9 uV
5	0.0005	+	0.0002	30 uV
10	0.0006	+	0.0002	70 uV

For all sample rates
All accuracy data in this table are tested with 1m shield cable.
Specs subject to minor changes when more tests become available

Table 29 Additional Accuracy Adjustment due to Temperature, DAQ Mode

For example, at the 0.1V range and $2^\circ C$ outside the 24 Hour $T_{cal} \pm 1^\circ C$ range, the basic accuracy entry (0.005%, 0.065%) must be adjusted to

$$(0.005\% + 0.0010\% * 2, 0.065\% + 0.0025\% * 2) = (0.007\%, 0.07\%).$$

The accuracy of the same 0.02V reading value is

$$\pm(0.007\% * 0.02 + 0.07\% * 0.1) = \pm0.0000714V = \pm71uV$$

The full-scale accuracy numbers are also provided in the additional accuracy table. For example, at the 0.1V range, and $2^\circ C$ outside 24 Hour $T_{cal} \pm 1^\circ C$ range, there is a 3uV/ $^\circ C$ adjustment. You will need to add $2 * 3uV = 6uV$ to the basic accuracy, and the total accuracy is $70 + 2 * 3 = 76$ uV.

4.3.3 Multi-Channel Adjustment

When JY-5500 operates at the multi-channel mode, the channel switching can incur additional errors because it takes time for the voltage to discharge from one channel before the next channel starts acquisition. Because JY-5500's 32 channels share one ADC, the channel sample rate of each channel is determined by

ChannelSample Rate = Sample Rate/N

where

SampleRate<=1M is selected by the driver software,
N is the total number of channels. N=2,3 ..., 32.

Table 30. lists the additional DC accuracy adjustment. No adjustments are needed for the sample rates lower than or equal to 200K/N. For the sample rate >=500K/N, the additional error increases. In most cases, these higher sample rates are not needed and not recommended for DC measurements. Please refer to 10.4 for details.

The source impedance, cable length and terminal block also affect the accuracy adjustment. Table 30. uses a 25 Ω impedance source, a JYTEK 2-meter cable and TB68 terminal block. The accuracy adjustment for the longer cable length and larger source impedance have not been tested.

In the above temperature adjustment example, at the 0.1V range, 2°C outside 24 Hour Tcal \pm 1°C range, N=2 channels, and the 500K/N sample rate, the total accuracy is 46 + 2*2 +45 uV = 95uV.

JY5500 Multi-Channel Accuracy Adjustment (uV)		
Nominal Range (V)	Sample Rate (Hz) per Channel	Full-Scale Multi-Channel Adjustment (uV)
0.1	<=200K/N	0
0.1	500K/N	45 uV
0.1	1M/N	98 uV
0.2	<=200K/N	0
0.2	500K/N	23 uV
0.2	1M/N	136 uV
0.5	<=200K/N	0
0.5	500K/N	32 uV
0.5	1M/N	314 uV
1	<=200K/N	0
1	500K/N	70 uV
1	1M/N	683 uV
2	<=200K/N	0
2	500K/N	109 uV
2	1M/N	904 uV
5	<=200K/N	0
5	500K/N	693 uV
5	1M/N	2,904 uV
10	<=200K/N	0
10	500K/N	2,375 uV
10	1M/N	5,713 uV

N: Number of channels from 2 to 32
 Use the next higher sample rate for the not listed sample rates
 1M/N not recommended for a DC measurement.
 Source Impedance: <=25Ω
 TB-68 Terminal Block, ACL-2006868-1 1m shield cable
 Preliminary, subject to changes.

Table 30 Additional Accuracy Adjustment due to Multi-Channel Mode

4.3.4 Basic DC Accuracy, DS Mode

JY 5510 and 5515 is capable to make very accurate DC measurement by using the DS Mode operation. Please note the DS mode is currently available for one channel measurement only. The reason is that the channel switching induces errors that affect the measurement accuracy. The DS mode is not intended for high frequency measurement at all. We strongly recommend the DS Mode measurement within the calibration temperature range to keep the maximum accuracies.

In the DS Mode, these boards use the onboard FPGA processing to reduce the noise effect and to improve the AI accuracy. The FPGA processing uses more sample points and will reduce the overall sample rates. For each range, the processing can be

different, so the sample rates can also be different. Typically, a slower sample rate delivers better accuracy.

JY5510/5515 only provide the accuracy entries for several predetermined sample rates. If you choose a different sample rate, you need to use the accuracy entries in the next higher sample rate. For instance, if you choose a 5K sample rate, you need to use the accuracy of the 10K sample rate.

Table 31 is the basic accuracy table in the DS Mode. The additional DC accuracy adjustment due to temperature in the DS Mode is identical to that in the normal DAQ mode as in Table 29.

JY5510, 5515 Basic Accuracy = $\pm(\% \text{ Reading} + \% \text{ Range})$, DSMode									
Nominal Range (V)	Max Sample Rate for 1 Channel	Resolution (uV)	24 Hour Tcal $\pm 1^\circ C$	90 Days Tcal $\pm 5^\circ C$	24 Hr Full Scale Accuracy	90 Days Full Scale Accuracy	Full Scale Accuracy (%)	Max Input Frequency Fs (Hz)	
0.1	1K	0.8	0.0024 + 0.0087	0.0052 + 0.0148	11 uV	20 uV	0.020	0.011	
0.1	10K	0.8	0.0024 + 0.0106	0.0052 + 0.0166	13 uV	22 uV	0.022	0.130	
1	1K	7.6	0.0008 + 0.0013	0.0029 + 0.0021	22 uV	50 uV	0.005	0.002	
1	10K	7.6	0.0008 + 0.0015	0.0029 + 0.0023	23 uV	52 uV	0.005	0.023	
10	1K	76.3	0.0007 + 0.0009	0.0031 + 0.0014	161 uV	453 uV	0.005	0.002	
10	10K	76.3	0.0007 + 0.0010	0.0031 + 0.0015	171 uV	463 uV	0.005	0.017	

Valid for one channel only. 95% of Confidence Interval
 DS Mode for 5510, 5515 only
 Use the next higher sample rate for not listed sample rates
 Use DAQ Mode when the sample rate>10KHz
 Add 20% to Gain and Offset Errors From 91 Days to 1 Year. Preliminary
 10 V range: valid for $\pm 9.5V$
 Source impedance $\leq 100\Omega$
 Add accuracy adjustment for temperature and multiple channels
 Max input freqency = (total accuracy/range)*Sample Rate/10, only 24 Hr. data provided
 All accuracy data in this table are tested with 1m shield cable.
 Specs subject to minor changes when more tests become available

Table 31 Basic AI Accuracy in DSMode

4.4 AI Absolute AC Accuracy

The AC accuracy is defined as the measurement accuracy of a single tone sinusoidal input signal. If the input the signal is not sinusoidal, the accuracy is not applicable.

Table 32 gives the total AC accuracy specification for JY-5500. It is for one channel only. There is no AC accuracy specification when the sinusoidal input is greater than 200KHz. The reason is we need at least 5 sample points per cycle to calculate a time domain sinusoidal waveform.

JY5500 Total Absolute AC Accuracy for One Channel							
	0.1V	0.2V	0.5V	1V	2V	5V	10V
[10Hz,50K]	0.28%	0.24%	0.23%	0.22%	0.17%	0.16%	0.15%
[50K,100K]	0.79%	0.66%	0.57%	0.74%	0.48%	0.39%	0.38%
[100K,200K]	2.42%	2.09%	1.90%	2.12%	1.28%	1.00%	1.00%

Valid for one channel measurement of sinusoidal input
 90 days, $T_{cal} \pm 5^\circ C$. For one year AC accuracy, add 20%. Preliminary
 Sample Rate $\geq 1.25M$. No specs for Sample Rate $< 1.25MHz$.
 DC Coupling
 10 V range: valid for $\pm 9.5V$
 Source impedance $\leq 100\Omega$
 All accuracy data in this table are tested with 1m shield cable.
 95% confidence level

Table 32 AC Accuracy for One Channel

4.5 AO Absolute Accuracy

4.5.1 AO Accuracy

The AO output accuracy of JY-5500 Series when using the analog output function can be calculated according to the corresponding parameters in the following table

Each entry in the basic accuracy table is a pair of gain and offset coefficients. Using these gain and offset coefficients, your AO output basic accuracy is calculated by following formula:

$$Accuracy = \pm(\% \text{ of Output} + \% \text{ of Range})$$

For example, at the 5V range and 24 Hours column, if your output is 2V, the accuracy of this measurement is:

$$\pm(0.003\% * 2 + 0.006\% * 5) = \pm0.00036V = \pm360\mu V$$

The basic accuracy table also provides full-scale accuracy entries for a quick and convenient look-up. For example, the full-scale accuracy for the 5V range and the 24-Hour calibration column is 470 μV .

JY5500 Basic AO Accuracy = \pm (% of Output + % of Range)											
Nominal Range (V)	Resolution (16-bits)	24 Hour Tcal $\pm 1^{\circ}\text{C}$	90 Days Tcal $\pm 5^{\circ}\text{C}$	Temperature Coefficients ($^{\circ}\text{C}$)	24 Hr Full-Scale Accuracy	90 Days Full-Scale Accuracy	Full Scale Accuracy (%)	Max Update Rate (S/s)			
5	153	0.006	+ 0.013	0.008	+ 0.014	0.0009	+ 0.0005	950 μV	1100 μV	0.022	2.86M
10	305	0.003	+ 0.007	0.005	+ 0.008	0.0006	+ 0.0002	1000 μV	1300 μV	0.013	2.86M

Valid for all update rates.
Add accuracy adjustment if temperature is outside calibration temperature range.
Maximum update rates(simultaneous)
1 Ch: 2.86M; 2 Ch: 2M; 3 Ch: 1.54M; 4 Ch: 1.25M
All accuracy data in this table are tested with 1m shield cable.
Specs subject to minor changes when more tests become available.

Table 33 AO Accuracy

4.5.2 Additional AO Accuracy Adjustment

Table 33 also has additional AO accuracy adjustment. It provides additional accuracy adjustments: temperature adjustment.

The temperature adjustment is needed when the operating temperature is outside the calibration temperature range, such as the $\text{Tcal} \pm 1^{\circ}\text{C}$ range, or the $\text{Tcal} \pm 5^{\circ}\text{C}$ range etc. The temperature coefficients, both the gain and offset coefficients, are provided. These coefficients must be added to the gain and offset coefficients in the basic accuracy table to calculate the accuracy. For example, at the 5V output and 2°C outside the 24 Hour $\text{Tcal} \pm 1^{\circ}\text{C}$ range, the basic accuracy entry (0.006%, 0.013%) must be adjusted to

$$(0.006\% + 0.0009\% * 2, 0.013\% + 0.0005\% * 2) = (0.0078\%, 0.014\%).$$

The accuracy of the same 2V output value is

$$\pm(0.0078\% * 2 + 0.014\% * 5) = \pm0.000856\text{V} = \pm856\mu\text{V}$$

5. Software

5.1 System Requirements

JY-5500 boards can be used in a Windows or a Linux operating system.

Microsoft Windows: Windows 7 32/64 bit, Windows 10 32/64 bit.

Linux Kernel Versions: There are many Linux versions. It is not possible JYTEK can support and test our devices under all different Linux versions. JYTEK will at the best support the following Linux versions.

Linux Version
Ubuntu LTS
16.04: 4.4.0-21-generic(desktop/server)
16.04.6: 4.15.0-45-generic(desktop) 4.4.0-142-generic(server)
18.04: 4.15.0-20-generic(desktop) 4.15.0-91-generic(server)
18.04.4: 5.3.0-28-generic (desktop) 4.15.0-91-generic(server)
Localized Chinese Version
中标麒麟桌面操作系统软件（兆芯版）V7.0（Build61）:3.10.0-862.9.1.nd7.zx.18.x86_64
中标麒麟高级服务器操作系统软件V7.0U6:3.10.0-957.el7.x86_64

Table 34 Supported Linux Versions

5.2 System Software

When using the JY-5500 in the Window environment, you need to install the following software from Microsoft website:

Microsoft Visual Studio Version 2015 or above,

.NET Framework version is 4.0 or above.

.NET Framework is coming with Windows 10. For Windows 7, please check .NET Framework version and upgrade to 4.0 or later version.

Given the resources limitation, JYTEK only tested JY-5500 be with .NET Framework 4.0 with Microsoft Visual Studio 2015. JYTEK relies on Microsoft to maintain the compatibility for the newer versions.

5.3 C# Programming Language

All JYTEK default programming language is Microsoft C#. This is Microsoft recommended programming language in Microsoft Visual Studio and is particularly suitable for the test and measurement applications. C# is also a cross platform programming language.

5.4 JY-5500 Series Hardware Driver

After installing the required application development environment as described above, you need to install the JY-5500 hardware driver.

JYTEK hardware driver has two parts: the shared common driver kernel software (FirmDrive) and the specific hardware driver.

Common Driver Kernel Software (FirmDrive): FirmDrive is the JYTEK's kernel software for all hardware products of JYTEK instruments. You need to install the FirmDrive software before using any other JYTEK hardware products. FirmDrive only needs to be installed once. After that, you can install the specific hardware driver.

Specific Hardware Driver: Each JYTEK hardware has a C# specific hardware driver. This driver provides rich and easy-to-use C# interfaces for users to operate various JY-5500 function. JYTEK has standardized the ways which JYTEK and other vendor's DAQ boards are used by providing a consistent user interface, using the methods, properties and enumerations in the object-oriented programming environment. Once you get yourself familiar with how one JYTEK DAQ card works, you should be able to know how to use all other DAQ hardware by using the same methods.

Note that this driver does not support cross-process, and if you are using more than one function, it is best to operate in one process.

5.5 Install the SeeSharpTools from JYTEK

To efficiently and effectively use JY-5500 boards, you need to install a set of free C# utilities, SeeSharpTools from JYTEK. The SeeSharpTools offers rich user interface functions you will find convenient in developing your applications. They are also needed to run the examples come with JY-5500 hardware. Please register and download the latest SeeSharpTools from our website, www.jytek.com.

5.6 Running C# Programs in Linux

Most C# written programs in Windows can be run by MonoDevelop development system in a Linux environment. You would develop your C# applications in Windows using Microsoft Visual Studio. Once it is done, run this application in the MonoDevelop environment. This is JYTEK recommended way to run your C# programs in a Linux environment.

If you want to use your own Linux development system other than MonoDevelop, you can do it by using our Linux driver. However, JYTEK does not have the capability to support the Linux applications. JYTEK completely relies upon Microsoft to maintain the cross-platform compatibility between Windows and Linux using MonoDevelop.

6. Operating JY-5500

This chapter provides the operation guides for JY-5500, including AI, AO, DI, DO, Timer and programmable I/O interface, etc.

JYTEK provides extensive examples, on-line help and documentation to assist you to operate the JY-5500 board. JYTEK strongly recommends you go through these examples before writing your own application. In many cases, an example can also be a good starting point for a user application.

6.1 Quick Start

After you have installed the driver software and the SeeSharpTools, you are ready to use Microsoft Visual Studio C# to operate the JY-5500 products.

If you are already familiar with Microsoft Visual Studio C#, the quickest way to use JY-5500 boards is to go through our extensive examples. We provide source code of our examples. In many cases, you can modify the source code and start to write your applications.

We also provide **Learn by Example** in the following sections. These examples will help you navigate and learn how to use this JY-5500.

6.2 Data Acquisition Methods

JY-5500 uses a scanning method to acquire analog data, meaning there is only one ADC chip on the device and all input channels share this ADC. In the scan acquisition mode, you need to configure AI channels and set up some parameters through JY-5500 driver software. The most important parameters are *Data Acquisition mode*, *Sample Rate*, *SamplesToAcquire*, *Channel Count*, *ChannelRange* and *Analog Input Terminal Type*.

AI Acquisition mode (AIMode): JY-5500 provides 4 acquisition modes, **Continuous**, **Finite**, **Single Point**, **Record**, which will be described in details in Section 6.2.1-6.2.4.

SampleRate: How fast data are acquired per second per channel. For example, if the sample rate is 1000Hz, you acquire two channels of data, you will have 2000 points/second.

SamplesToAcquire: This parameter behaves differently in the different AI acquisition modes. In the continuous acquisition mode, *SamplesToAcquire* is the buffer size used

in the AI acquisition task, please see Section 6.2.1; in the finite acquisition mode, it is the total number of samples to capture, please see Section 6.2.2.

Channel Count: how many channels you want to collect data. You can set up the channels in different orders, for instance 2,3,1,0. The acquired data will be arranged in the way you specify as shown in Figure 6. In this particular case, *Channel Count* is 4.

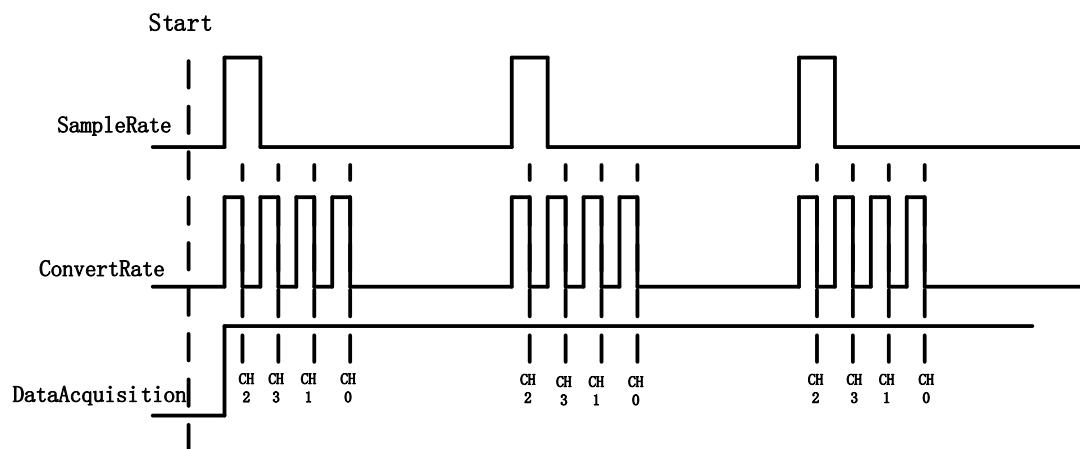


Figure 6 Sample Rate and Internal AD Conversion

ConvertRate denotes the working rate of ADC. In default: $ConvertRate = SampleRate * ChannelCount$. User can redefine the *ConvertRate* in our software. If user want to redefine *ConvertRate*, *The following conditions must be met:*

*Multichannel maximum sample rate (aggregate) >= ConvertRate >= SampleRate * ChannelCount.*

User can get Multichannel maximum sample rate (aggregate) from section 1.3.1

Learn by Example6.2

- Connect the two signal source's positive outputs to JY-5500 AI Ch0 (AI0+, Pin #68) and AI Ch1 (AI1+, Pin#33), two negative terminals to the ground (AI_GND, Pin#67) as shown in Figure 2 and Figure 3. (AI0+, AI_GND) and (AI1+, AI_GND) consist of two channels of RSE inputs and they share the same GND.
- Set a sinewave signal (f=4Hz, Vpp=5V) and a squarewave signal (f=4Hz, Vpp=5V).
- Open **Analog Input-->Winform AI Continuous MultiChannel**, set the following numbers as shown. This sample program will continuously acquire data from multiple channels.

Basic Param Configuration

Card ID	5510
Slot Number	0
Channel Count	2
AI Terminal	RSE
Sample Rate(Sa/s)	10,000
Samples to Acquire	1,000
Input Range	±10V

Figure 7 Continuous MultiChannel Paraments

- **SampleRate** is set by **Sample Rate**
- **Samples to Acquire** is the samples to be acquired for each channel in one block. The continuous mode will acquire blocks after blocks until **Stop** button is pressed.
- When **start** is clicked, it generates a software trigger, which starts the acquisition. The result is shown below.

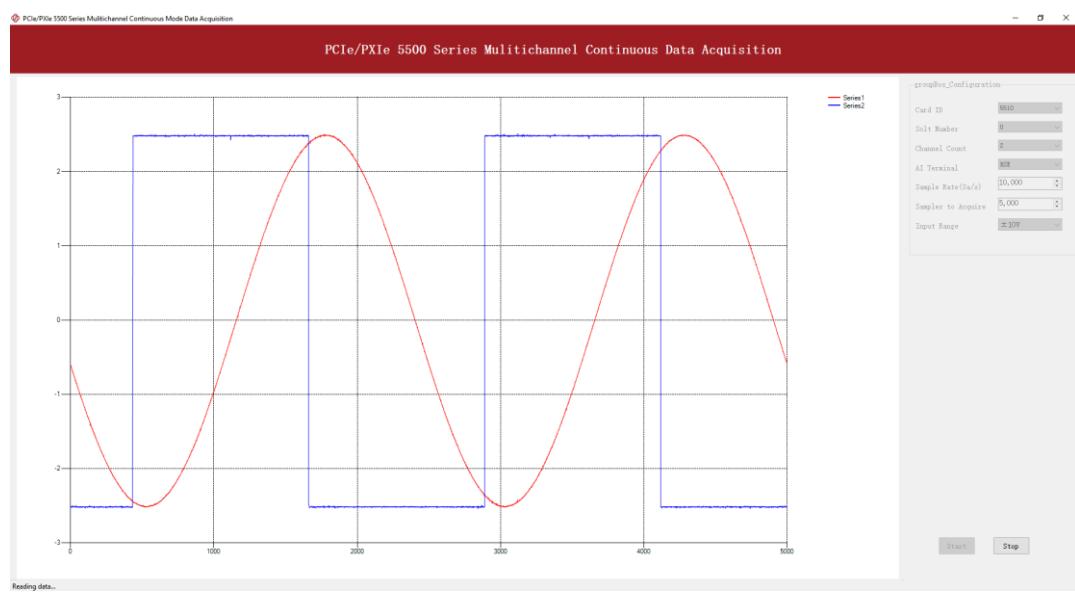


Figure 8 MultiChannel Continuous Acquisition

6.2.1 Continuous Acquisition

An AI acquisition task will acquire the data continuously until the task is stopped. The JY-5500 device will continue acquiring data and save the data in a circular buffer. You specify how many samples to read back by the user buffer's length, if your program does not read the data fast enough, the circular buffer may overflow. In this case, the driver software will throw out an error message.

Tip: User buffer's length $1/10^{\text{th}}$ to $1/4^{\text{th}}$ *SampleRate* is a good start.

6.2.2 Finite Acquisition

In the Finite Acquisition mode, an AI acquisition task will capture specific total number of samples by the parameter, *SamplesToAcquire*.

You can use the sample program **Analog Input --> Winform AI Finite** to learn more about Finite Acquisition.

6.2.3 Single Point Acquisition

In the Single Acquisition mode, it is to capture a single sample for each acquisition.

You can use sample program: **Analog Input --> Console AI Single Point** to learn more about the single point Acquisition.

6.2.4 Record Acquisition

AI Task will continuously capture the data and then save them to a storage disk. During the capturing process, user can preview the captured data randomly when the capturing process is available. The mode is particularly useful for high-speed acquisition and recording applications.

6.3 Analog Input Terminal Type

The JY-5500 provide 3 analog input terminal types:

- Differential (DIFF)
- Referenced Single-Ended (RSE)
- Non-Referenced Single-Ended (NRSE)

The DIFF connection is recommended for ground-referenced signal sources and it is usually better in rejecting the common-mode noise. However, to acquire one input signal, two AI channels are required to form the differential pair. The RSE and NRSE are recommended when the input signal sources are floating signals. In RSE and NRSE

modes, these floating signal sources all share the same ground reference (AI_GND). Because of it, the RSE and NRSE modes can acquire twice as many channels than the DIFF mode. Appendix 10 has more details on these 3 modes.

6.3.1 DIFF Mode

The DIFF mode connects signal's positive side to AI's positive input, signal's grounded negative side to AI's negative input as shown in Figure 9. The common noise appears on both positive and negative terminals of the differential amplifier, thus it will be cancelled out. Therefore, the DIFF mode has better signal-to-noise ratio (SNR). Please see Appendix 1 Common Analog Measurement Issues for more explanations.

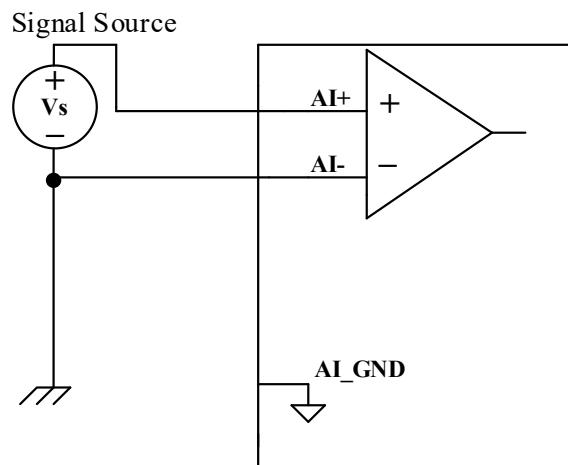


Figure 9 Differential Mode for Grounding Signals

Learn by Example 6.3.1

- Open the program **Analog Input-->Winform AI Continuous MultiChannel**
- Connect the two signal source's positive outputs to JY-5500 AI Ch0 (AI0+, Pin #68) and AI Ch1 (AI1+, Pin#33), two negative terminals to AI Ch0 negative (AI0-, Pin#34) and AI Ch1 negative (AI1-, Pin#66) as shown in Figure 2 and Figure 3. (AI0+, AI0-) and (AI1+, AI1-) consist of two pairs of DIFF inputs;
- Choose Differential in **AI Terminal**;
- Set other numbers as shown and click **start**.

Basic Param Configuration

Card ID	5510
Slot Number	0
Channel Count	2
AI Terminal	Differential
Sample Rate(Sa/s)	10,000
Samples to Acquire	1,000
Input Range	±10V

Start **Stop**

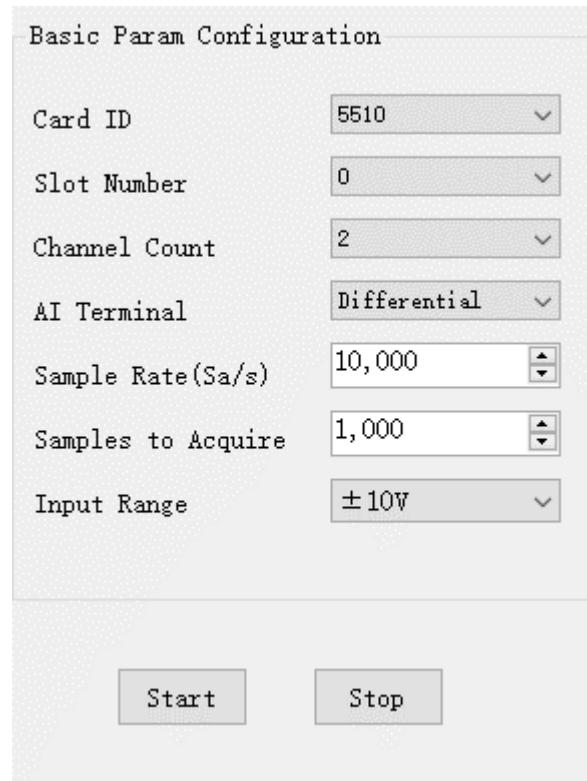


Figure 10 Choose Differential In AI Terminal

6.3.2 RSE Mode

In the RSE mode, all input signals' negative sides are connected to the AI ground of Instrumentation Amplifier, as shown in Figure 11. This mode works for measurements from floating sources. The RSE mode is suitable when these two conditions exist:

- The input signals are floating, meaning they are not connected to the ground
- When the common mode noise is low, meaning a clean environment.

The RSE mode offers twice as many measurement channels as the DIFF mode. Please see Appendix 1 Common Analog Measurement Issues for more explanations.

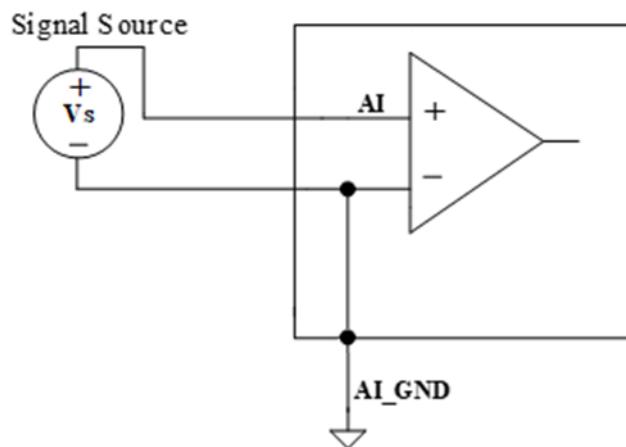


Figure 11 RSE Mode for Floating Signals

6.3.3 NRSE Mode

The NRSE mode is recommended for the measurement of ground-referenced signals, as shown in Figure 12. NRSE is also called the pseudo differential mode, because it looks very similar to a DIFF connection. In this mode, the JY-5500 device offers a special reference point, AI SENSE. Instead of connecting two grounds directly, signal's ground and PXI device's ground, the input signals' ground is connected to AI SENSE to avoid the ground loop bias. The JY-5500 is also designed to better reject the common mode noise than the RSE mode. Therefore the NRSE mode still offers twice many channels as the DIFF mode. Please see Appendix 1 Common Analog Measurement Issues for more explanations.

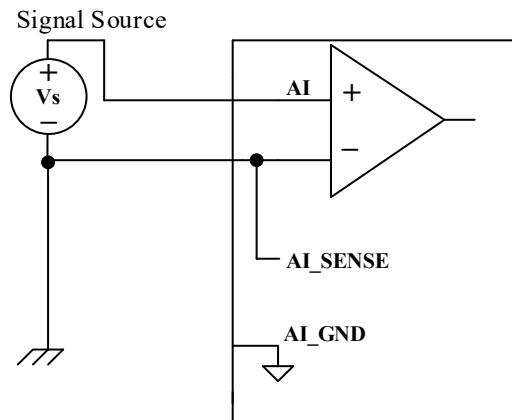


Figure 12 NRSE Mode for Grounding Signals

Learn by Example 6.3.3

- Open the program **Analog Input-->Winform AI Continuous MultiChannel**.
- This Example needs two TB-68 terminal blocks, Connector0 and Connector1 and two cables, which are connected to JY-5500. Connect the two signal source's positive outputs to PCIe-5510 AI Ch0 (AI0+, Pin #68) and AI Ch1 (AI1+, Pin#33), two negative terminals to AI_SENSE 0 (Pin#62) of the first TB-68 and AI_SENSE 1 (Pin#62) of the second TB-68 as shown in Figure 2 and Figure 3. (AI0+, AI_SENSE 0) and (AI1+, AI_SENSE 1) consist of two channels of NRSE inputs.
- Choose the NRSE in **AI Terminal**
- Set other numbers as shown and click **start**.

Basic Param Configuration

Card ID	5510
Slot Number	0
Channel Count	2
AI Terminal	NRSE
Sample Rate(Sa/s)	10,000
Samples to Acquire	1,000
Input Range	±10V

Start **Stop**

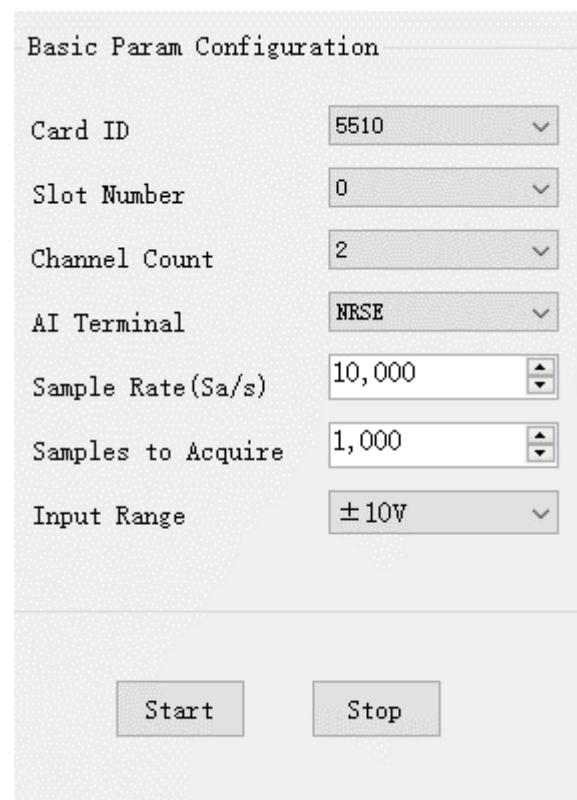


Figure 13 Choose NRSE In AI Terminal

6.4 Trigger Source

There are 4 trigger types: Immediate trigger, Software trigger, Analog trigger, and Digital trigger. The trigger type is a property and set by driver software.

6.4.1 Immediate trigger

This trigger mode does not require configuration and is triggered immediately when an operation starts. The operation can be AI, AO, DI, DO, CI, CO etc.

Learn by Example 6.4.1

- Use the same program and connection as in **Learn by Example 6.2**.

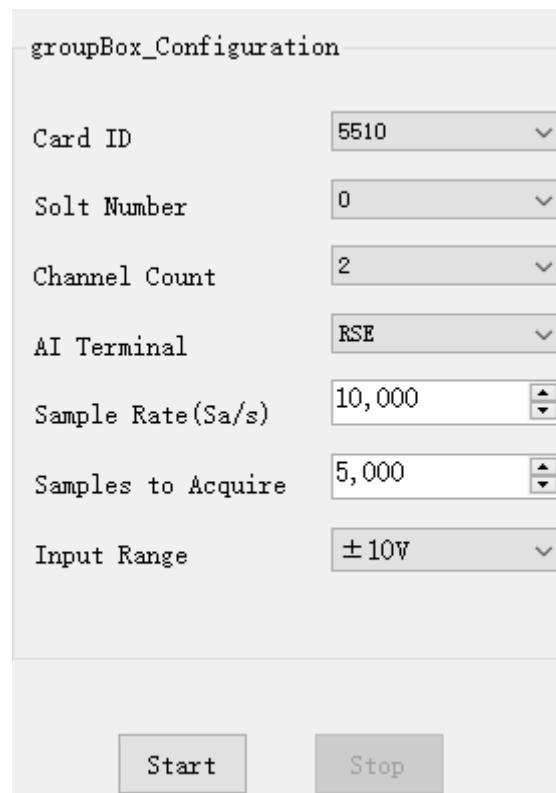


Figure 14 Immediate trigger Params

- With Immediate trigger you can click **Start** to generate the task instead of sending a trigger signal.

6.4.2 Software Trigger

A software trigger must be configured by the driver software. The trigger starts when a trigger software routine is called.

Learn by Example6.4.2

- Connect the signal source's positive terminal to JY-5500 AI Ch0 (AI0+, Pin#68), the negative terminal to the ground (AI_GND, Pin#67) as shown in Figure 2 and Figure 3. (AI0+, AI_GND) consists of a RSE input.
- Set a sinewave signal (f=4Hz, Vpp=5V).
- Open **Analog Input-->Winform AI Continuous Soft Trigger**, set the following numbers as shown.
- Click **Start** to run the task.

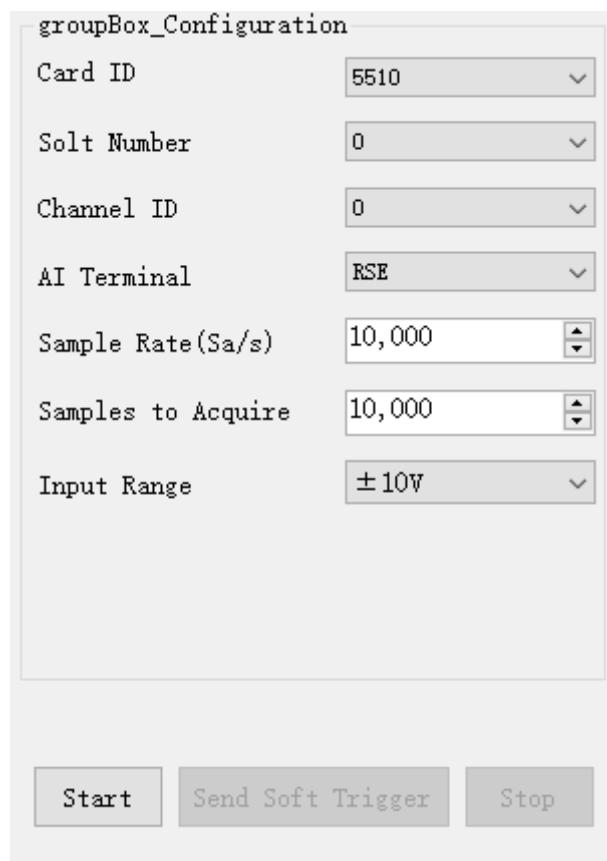


Figure 15 Software trigger Params

- Data will not be acquired until there is a positive signal from *Software Trigger* when **Send Soft Trigger** is clicked.
- After sending the trigger signal, the result will be like this:

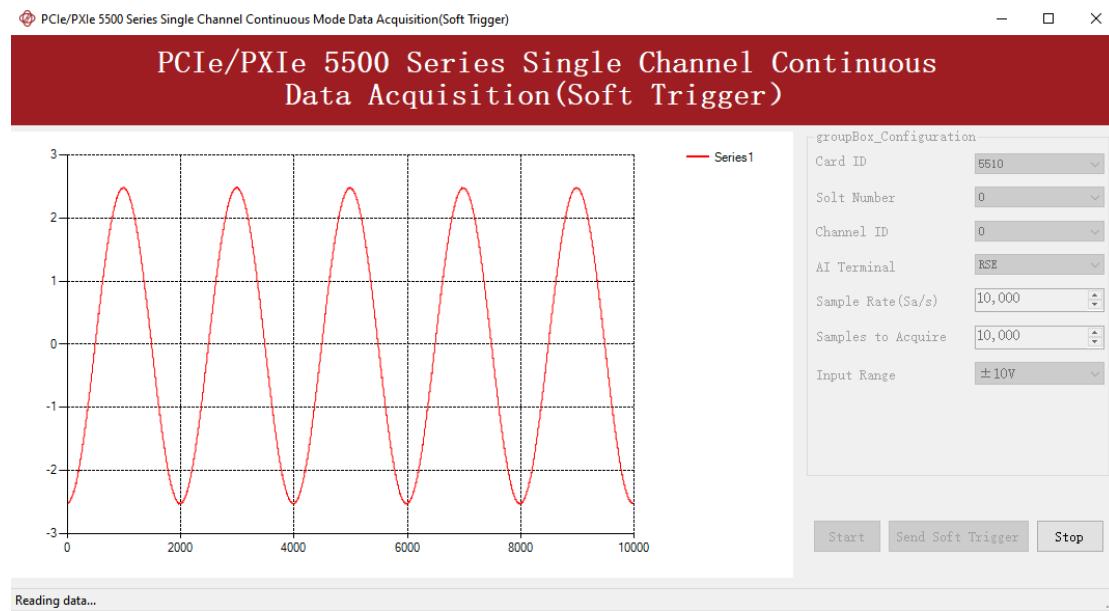


Figure 16 Software trigger Acquisition

6.4.3 External Analog Trigger

You can assign one of measurement channels as the analog trigger source. JY-5500 provides three analog trigger modes:

- Edge comparator,
- Hysteresis comparator,
- Window comparator.

Analog trigger threshold range can be arbitrarily selected in the effective range of the selected channel. When setting the threshold, please pay attention to the physical unit currently in use.

Edge comparator

In the Edge comparator, there are two trigger conditions: *Rising Slope Trigger* and *Falling Slope Trigger*.

Rising Slope Trigger: The Edge comparator output is high when the signal goes above the threshold; the output is low when the signal goes below the threshold as shown in Figure 17.

Falling Slope Trigger: The Edge comparator output is high when the signal goes below the threshold; the output is low when the signal goes above the threshold as shown in Figure 18.

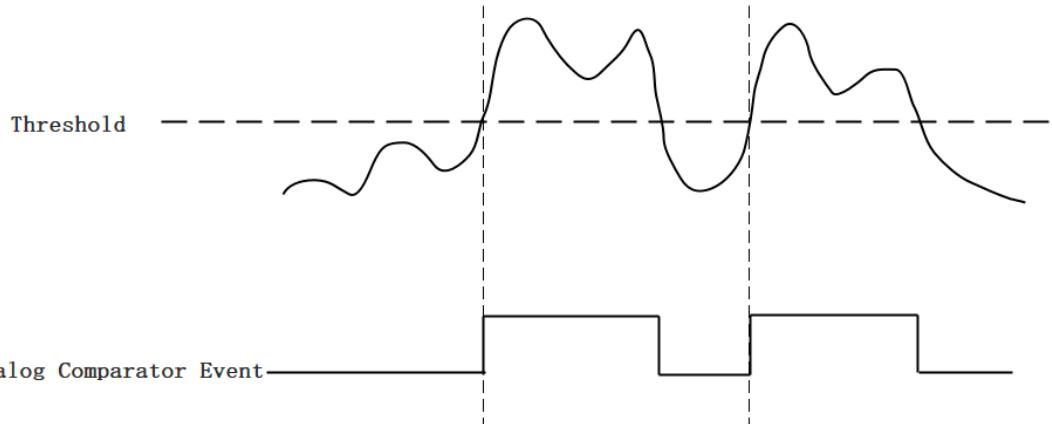


Figure 17 Rising Slope Trigger

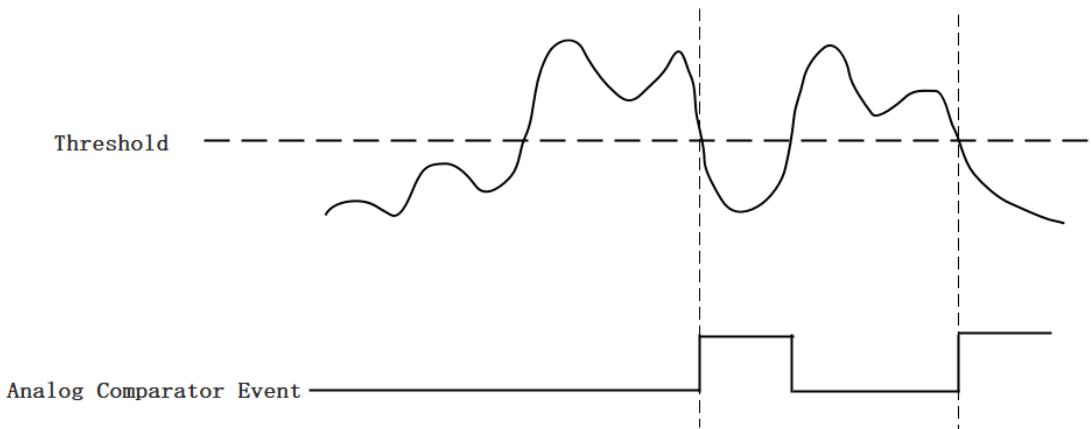


Figure 18 Falling Slope Trigger

Hysteresis Comparator

The hysteresis comparator is designed for preventing spurious triggering. You can set hysteresis region by setting high threshold and low threshold. There are two trigger conditions: *Hysteresis with Rising Slope Trigger* and *Hysteresis with Falling Slope Trigger*.

Hysteresis with Rising Slope Trigger: The Hysteresis comparator output is high when the signal must first be below the low threshold, then goes above the high threshold. The output will change to low when the signal goes below the low threshold as shown in Figure 19.

Hysteresis with Falling Slope Trigger: The Hysteresis comparator output is high when the signal must first be above the high threshold, then goes below the low threshold. The output will change to low when the signal goes above the high threshold as shown in Figure 20.

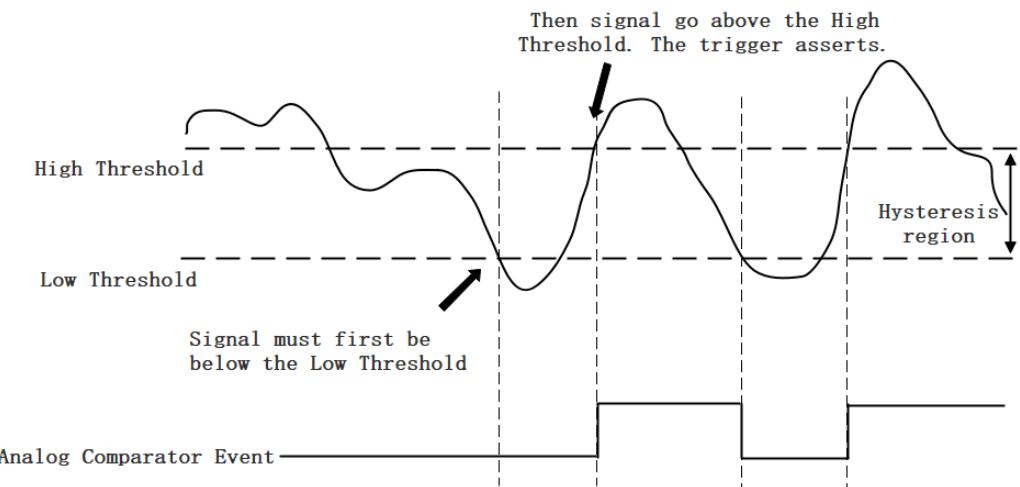


Figure 19 Hysteresis with Rising Slope Trigger

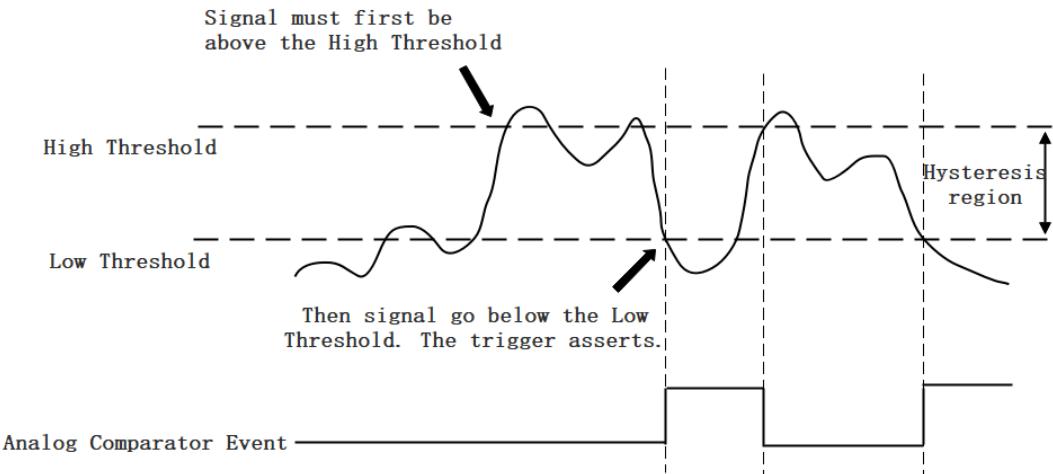


Figure 20 Hysteresis with Falling Slope Trigger

Window comparator

The window comparator is designed to acquire signal from interesting window by setting High Threshold and Low Threshold. There are two trigger conditions: *Entering Window Trigger* and *Leaving Window Trigger*.

Entering Window Trigger: The window comparator output is high when the signal enters the window defined by the *Low Threshold* and *High Threshold*. The output will change to low when the signal leaves the window as shown in Figure 21.

Leaving Window Trigger: The window comparator output is high when the signal leaves the window defined by the *Low Threshold* and *High Threshold*. The output will

change to low when the signal enters the window as shown in Figure 22 Leaving Window Trigger.

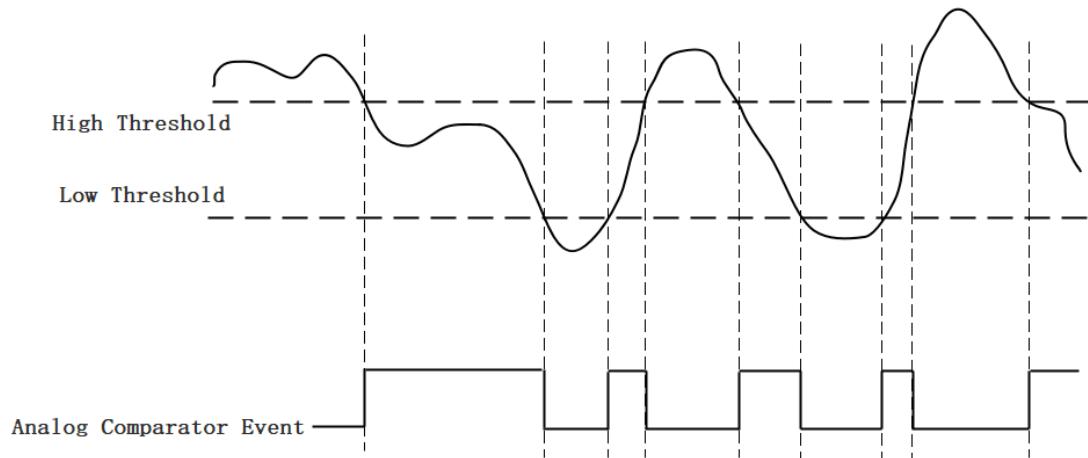


Figure 21 Entering Window Trigger

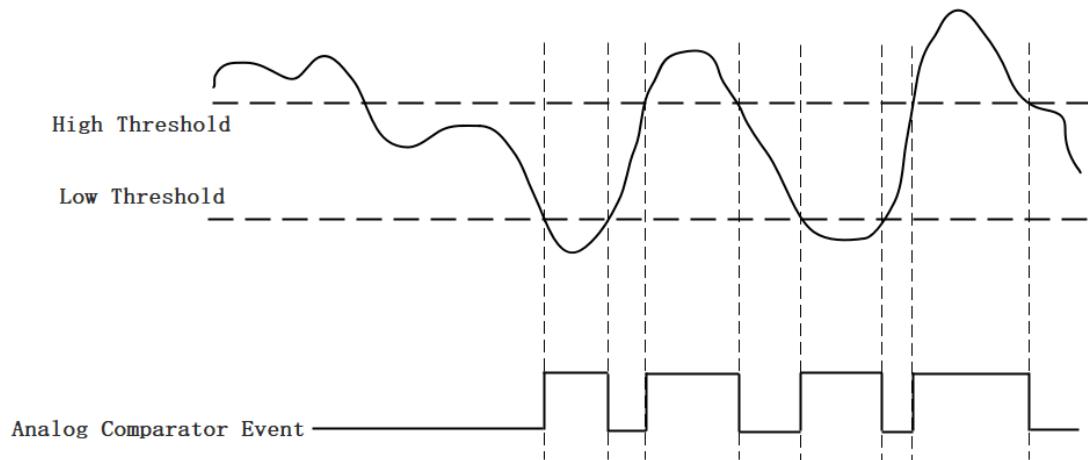


Figure 22 Leaving Window Trigger

Learn by Example 6.4.3

- Connect the signal source's positive terminal to JY-5500 AI Ch0 (AI0+, Pin#68), the negative terminal to the ground (AI_GND, Pin#67) as shown in Figure 2 and Figure 3. (AI0+, AI_GND) consists of a RSE input.
- Set a sinewave signal (f=4Hz, Vpp=5V).
- Open **Analog Input-->Winform AI Continuous Analog Trigger**, set the following numbers as shown.

Figure 23 Analog Trigger Params

- Modes of the *Analog Trigger* are set by **Trigger Comparator**. Set it to **Edge**.
- The edge of *EdgeComparator* set by **Trigger Edge**. (**Rising** and **Falling**)
- **Trigger source** can be any channel of JY-5500 analog input. Set it to **Channel_0**.
- According to the rules of **Rising** mentioned above, the signal acquisition will not start until it raises to 2.0 V, which is set by **Threshold** above.

- Click Start, a message will appear in the lower left corner:

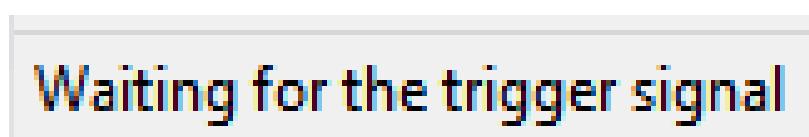


Figure 24 Waiting For Trigger

- This indicates the data acquisition will start only after a triggering event. In this example a trigger signal will occur when the *hysteresis comparator* meets the condition explained in **6.4.3**.

- The result is shown below:

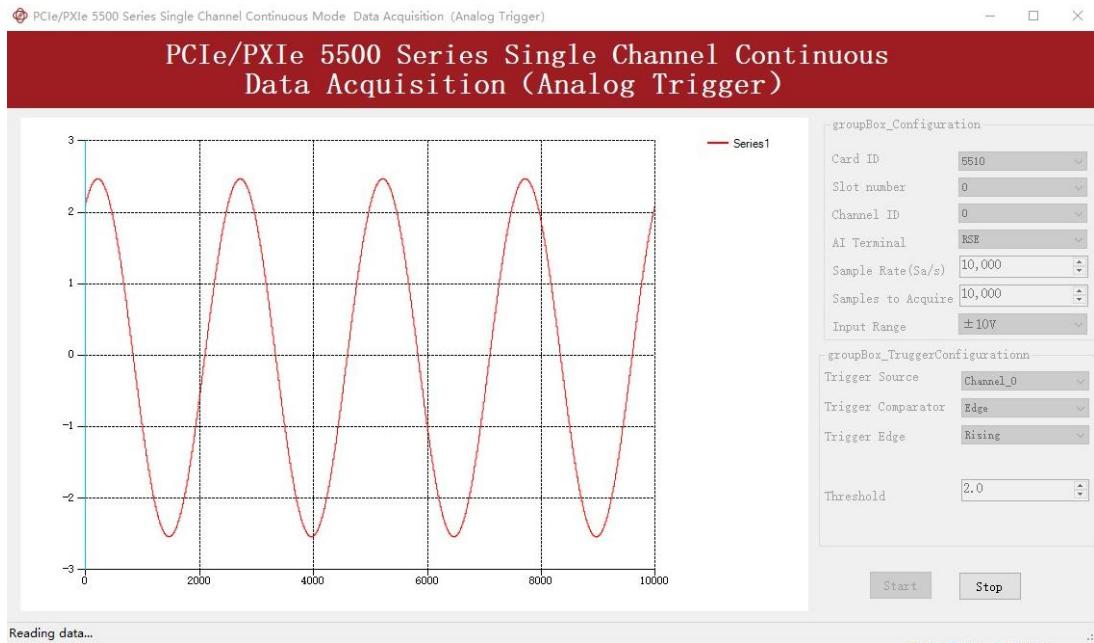


Figure 25 Analog Trigger Acquisition

- The signal starts at 2.0V, which matches the **Edge** mode set before.

6.4.4 External Digital Trigger

JY-5500 supports different external digital trigger sources from PXI Trigger bus (PXI_TRIGGER<0..7>), PXI_STAR and connectors of front panel (PFI). The high pulse width of digital trigger signal must be longer than 20 ns for effective trigger. The module will monitor the signal on digital trigger source and wait for the rising edge or falling edge of digital signal which depending on the set trigger condition, then cause the module to acquire the data as shown in Figure 26

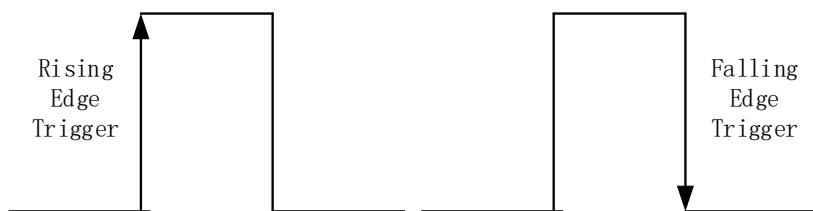


Figure 26 External Digital Trigger

Learn by Example 6.4.4

- Connect the signal source two positive terminals to JY-5500 AI Ch0, (AI0+, Pin #68) and digital trigger source (PFI 0, Pin#11), two negative terminals to the ground of analog input (AI_GND, Pin#67) and the ground of digital input/output (DGND, Pin#44) as shown in Figure 2 and Figure 3. (AI0+, AI_GND) consists of a RSE input. (PFI0, DGND) provides the trigger signal.
- Set a sinewave signal (f=4Hz, Vpp=5V) and a squarewave signal (f=4Hz, Vpp=5V).
- Open **Analog Input-->Winform AI Continuous Digital Trigger**, set the following numbers as shown.

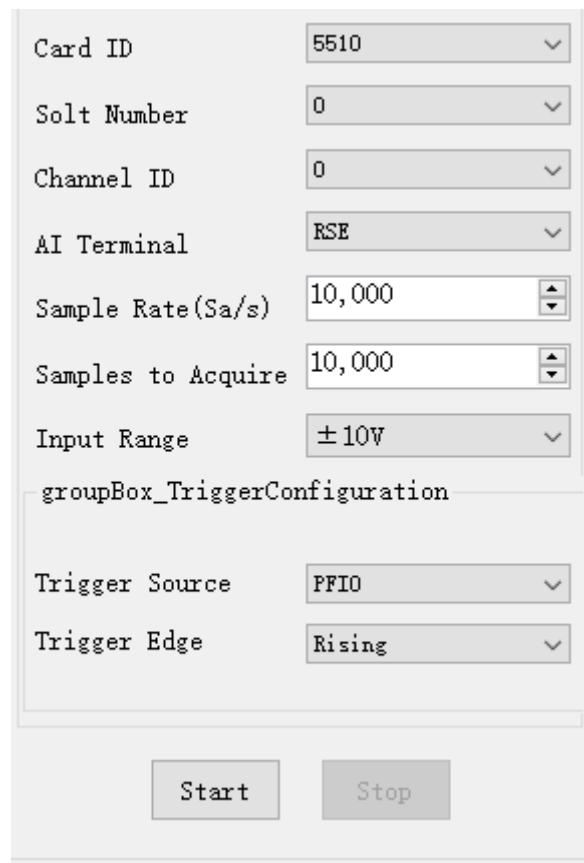


Figure 27 Digital Trigger Params

- Trigger Source must match the pin on 5510.
- There are two Trigger Edge: Rising and Falling.
- Click Start and the result shows below:

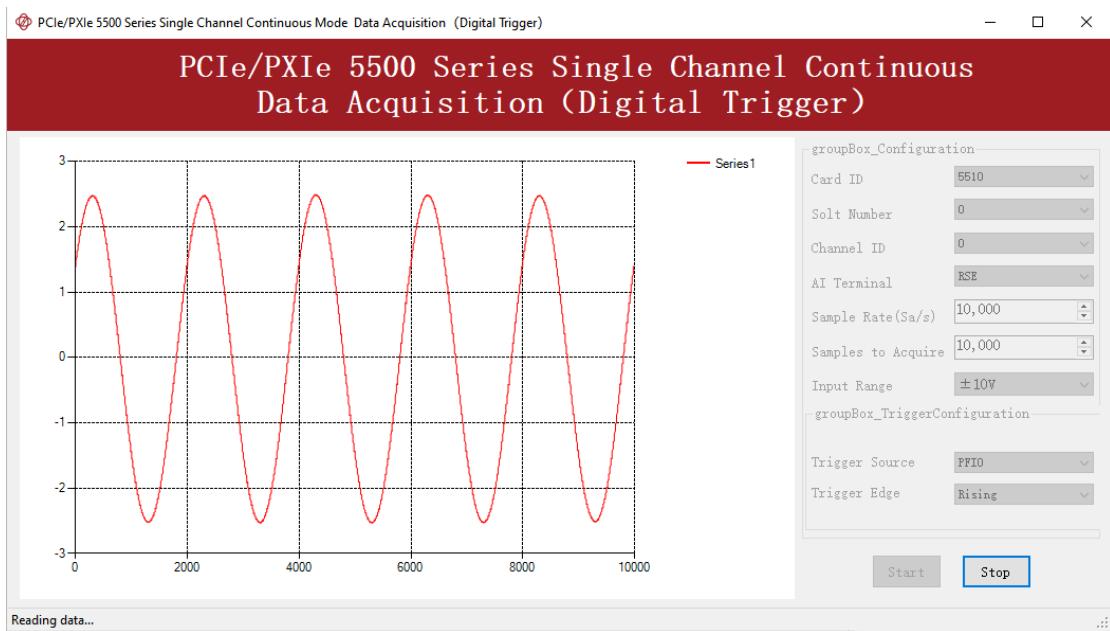


Figure 28 Digital Trigger Acquisition

- Since the squarewave is used for the digital trigger source, when a rising edge of the squarewave occurs, the digital trigger will be activated, and the data acquisition will start.

6.5 Trigger Mode

The JY-5500's analog inputs support several trigger modes: start trigger, reference trigger, and re-trigger.

6.5.1 Start Trigger

In this mode, data acquisition begins immediately after the trigger. This trigger mode is suitable for continuous acquisition and finite acquisition. As shown in Figure 29.

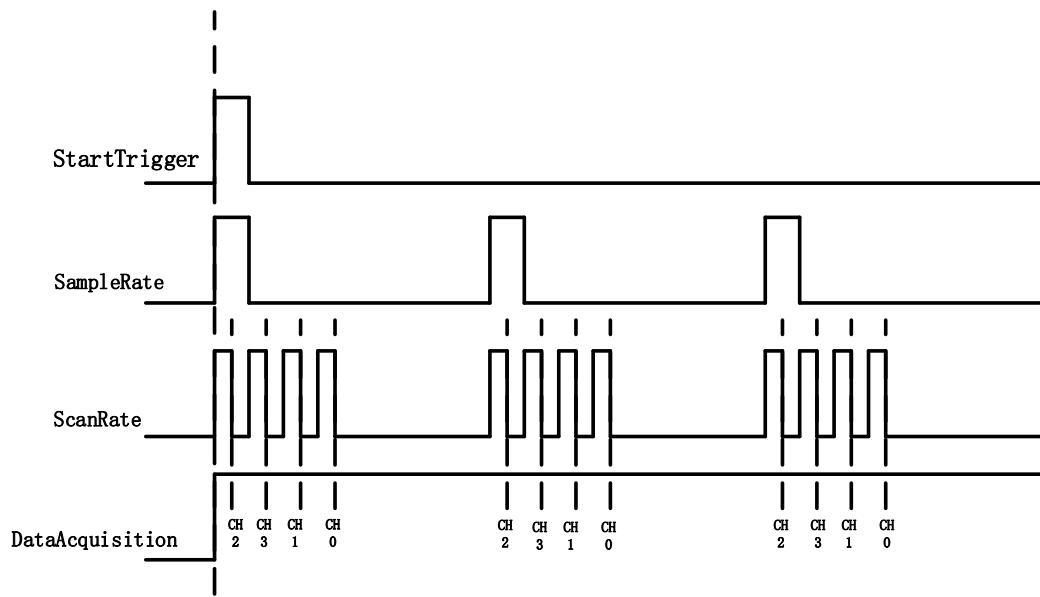


Figure 29 Start Trigger

6.5.2 Reference Trigger

This trigger mode is suitable for finite acquisition. In this mode, user can set the number of pre-trigger samples. The default number of pre-trigger points is 0. First you need to start the data acquisition. When the reference trigger condition is met, the routine will return the acquired data points. If when the points less than the pre-trigger samples, the trigger signal be ignored. An example is show below.

Example

- Total samples: 1000;
- Channel Count: 1
- Pre-trigger samples: 10;
- After triggering, it returns total 1000 samples, 10 being pre-triggered, 990 after triggering

The principle is shown in Figure 30.

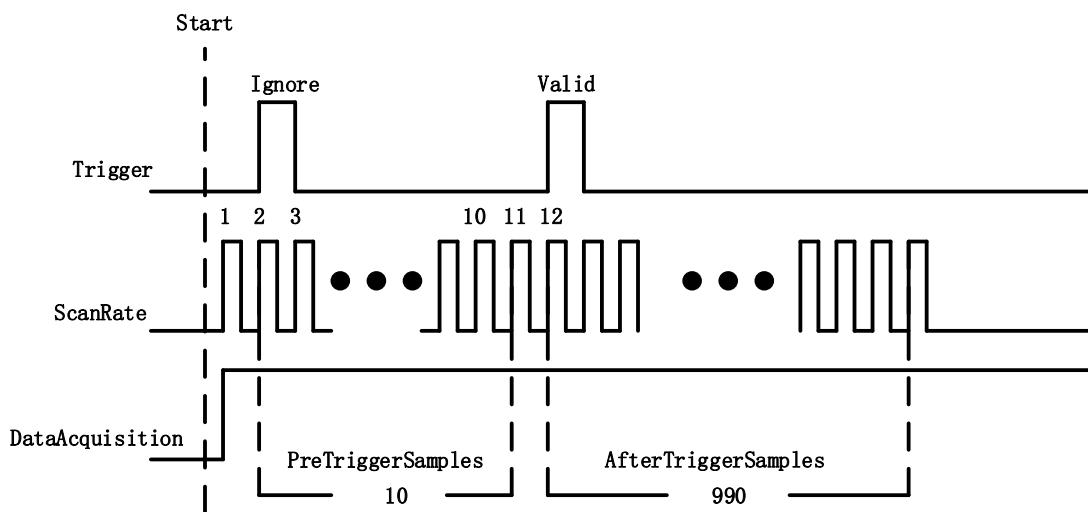


Figure 30 Reference Trigger

6.5.3 ReTrigger

JY-5500 series products support retrigger mode. In the retrigger mode, you can set the number of retriggers and the length of each acquisition. Assuming that the number of retriggers is n and the length of each trigger acquisition is m , the length of all acquisition data is $n * m * \text{channelcount}$. Show in Figure 31.

When the number of retriggers is -1, it is infinite.

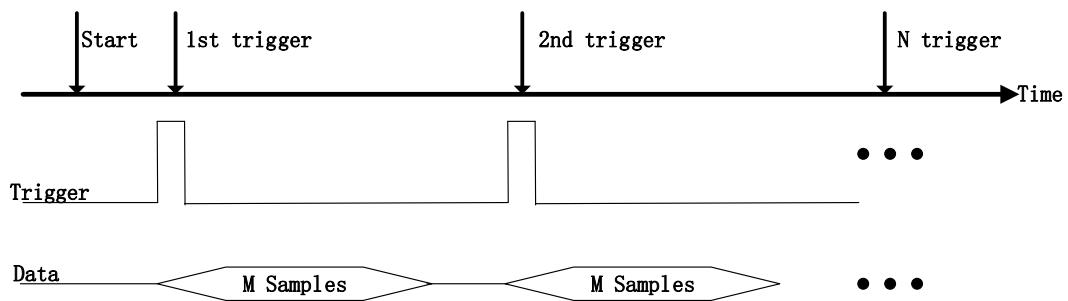


Figure 31 ReTrigger

6.5.4 Learn by Example 6.5

- Connect the signal source's positive terminal to JY-5500 AI Ch0 (AI0+, Pin#68), the negative terminal to the ground (AI_GND, Pin#67) as shown in Figure 2 and Figure 3. (AI0+, AI_GND) consists of an RSE input.
- Set a sinewave signal ($f=4\text{Hz}$, $V_{pp}=5\text{V}$).
- Open **Analog Input-->Winform AI Finite Analog Trigger**, set the following

numbers as shown.

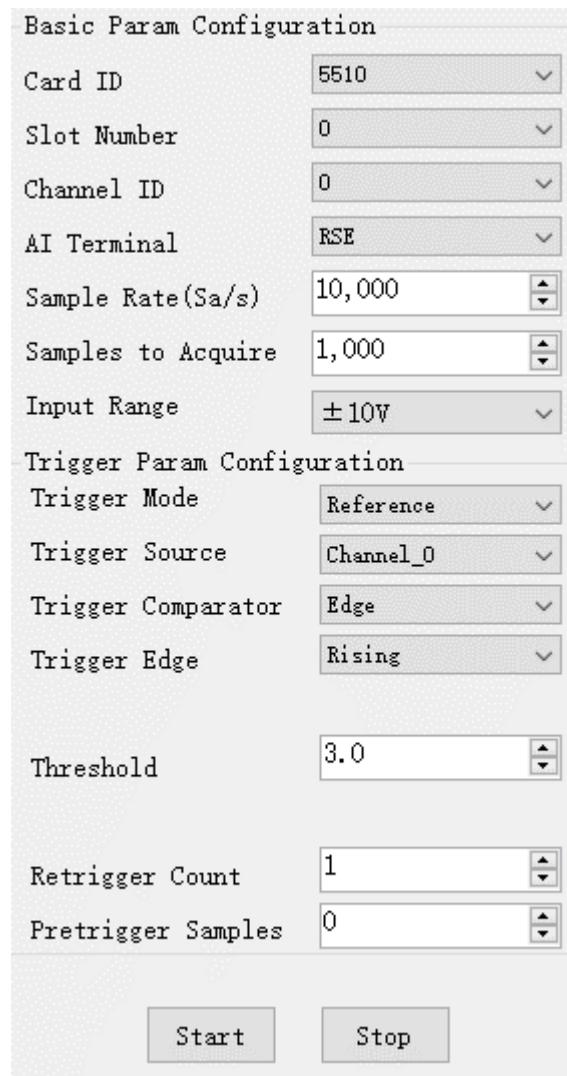


Figure 32 Retrigger Params

- You can use three different kinds of triggers in this program as mentioned in **6.5**. *Start Trigger* and *Reference Trigger* can be set by **Trigger Mode**. For *ReTrigger* can be used by changing the numbers in **Retrigger Count**.
 - **PretriggerSamples** is set by **Pretrigger Samples**.
- Now the trigger is a **Start Trigger**. Click **Start** to begin the data acquisition, the result is shown below:

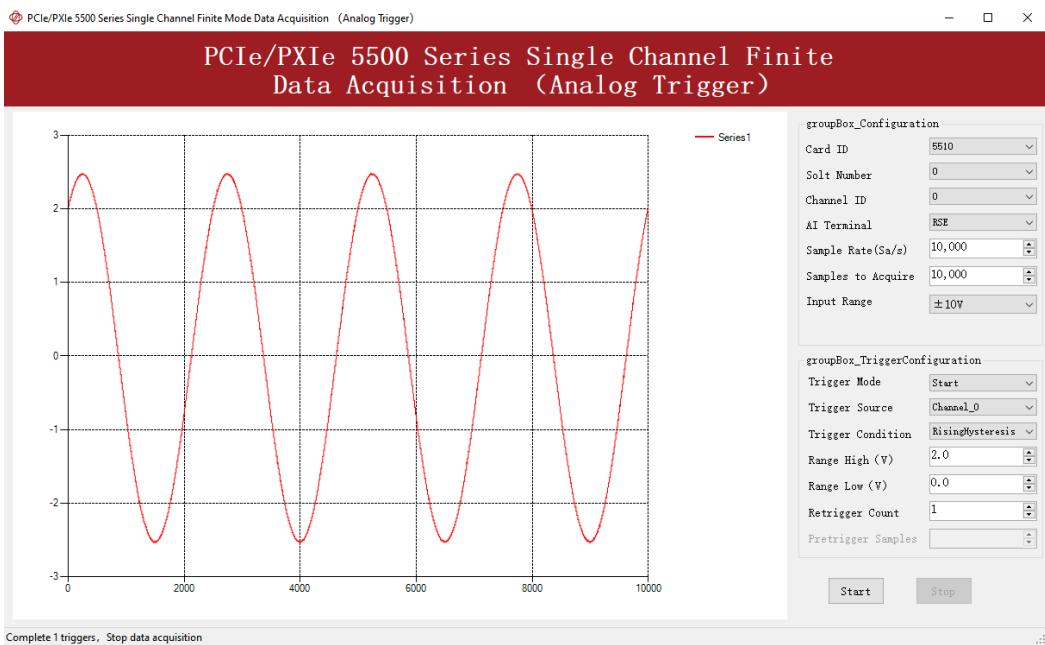


Figure 33 Retrigger In Start Trigger Mode

- Now change the **Trigger Mode** to **Reference** mode with **Pretrigger Samples 1000**. A different result shows below:

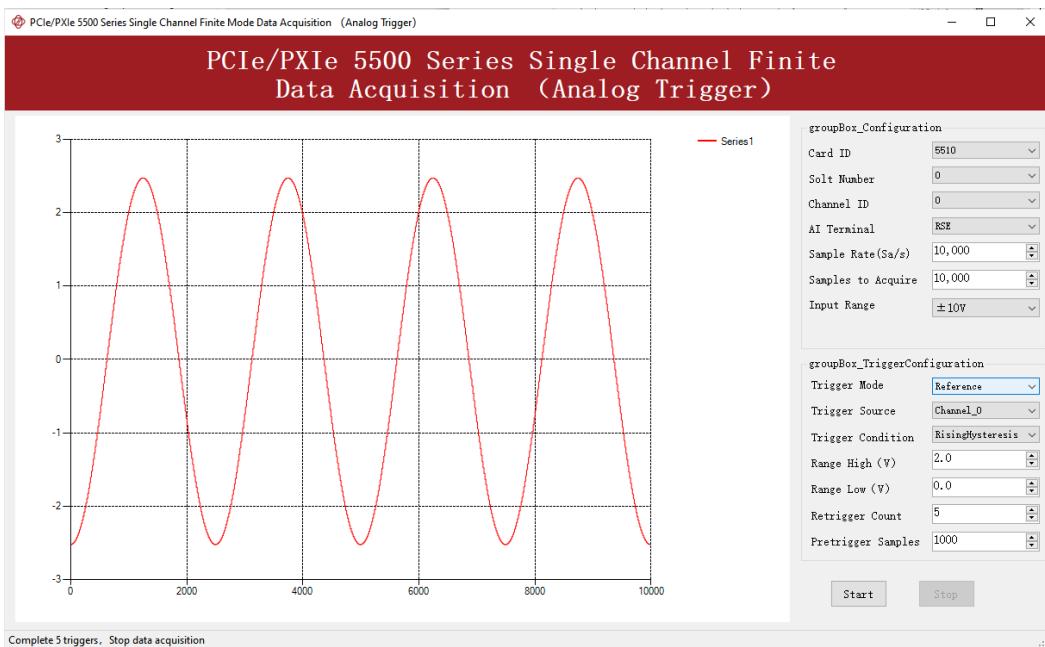


Figure 34 Retrigger In Reference Trigger Mode

- You can see the horizontal movement between two signals due to the change of **Trigger Mode**.

-
- Now change the mode of trigger to *Retrigger* through giving **Retrigger Count** a number other than 0 and click **Start**. A message will appear in the lower left corner: “Complete the n^{th} trigger”.

Complete the 2th trigger

Figure 35 Complete Retrigger Count

- It shows the acquisition process through every trigger signal.

6.6 AO Operations

The JY-5500 AO provides 16-bit simultaneous outputs. The analog output has three modes of operation: Finite, ContinuousWrapping, and ContinuousNoWrapping.

6.6.1 Finite Output

The finite output requires the user to write a piece of data. After starting the AO, it starts to output the written data until the output is completed.

Learn by Example 6.6.1

- Connect JY-5500 AO Ch0 (AO0, Pin #22) to AI Ch0 (AI0+, Pin#68), Ground of AO0 (AO_GND, Pin#55) to Ground of AI0 (AI_GND, Pin#67). (AI0+, AI_GND) consists of a RSE input; (AO0, AO_GND) consists of an output.
JY-5500 sends an analog signal through (AO0, AO_GND) and reads back the signal from (AI0+, AI_GND).
- Open **Analog Input-->Winform AI Continuous**, set the following numbers as shown.

Card ID	5510
Slot Number	0
Channel ID	0
AI Terminal	RSE
Sample Clock	Internal
External Clock	PF12
Sample Rate (Sa/s)	10,000
Samples to Acquire	3000
Input Range	±10V

StartStop

...

Figure 36 AI Continuous Parameters

- Click **Start** to start the data acquisition.
- Open **Analog Output-->Winform AO Finite**, set the following numbers as shown:

Card ID

5510

Update Rate(Sa/s)

2,000,000

Solt Number

0

Samples to Update

1,000,000

Channel ID

0

Output Range

±10V

Waveform Configuration

Wave Type	Wave Amplitude	Wave Frequency
SineWave	5	10

Start

Stop

Figure 37 AO Finite Output Params

- Click **Start** to generate a **SineWave**. The generated signal is shown below:

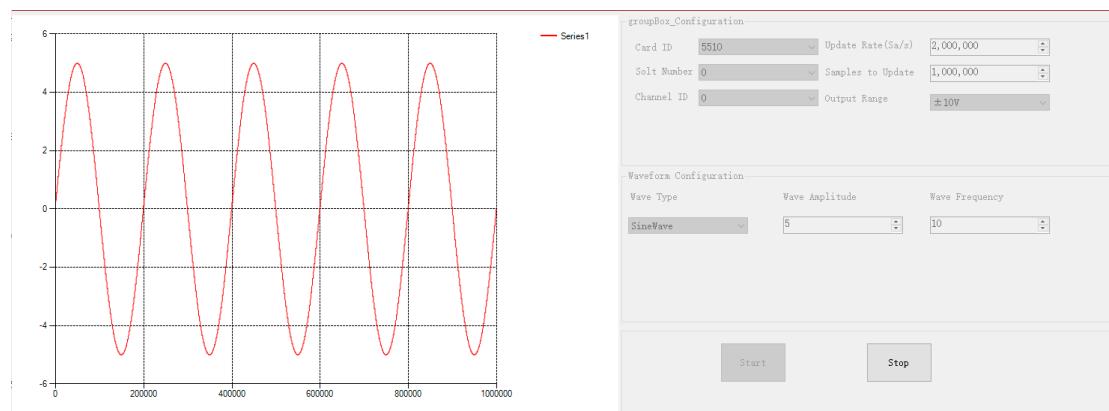


Figure 38 AO Finite Signal

- And the received signal is shown below.

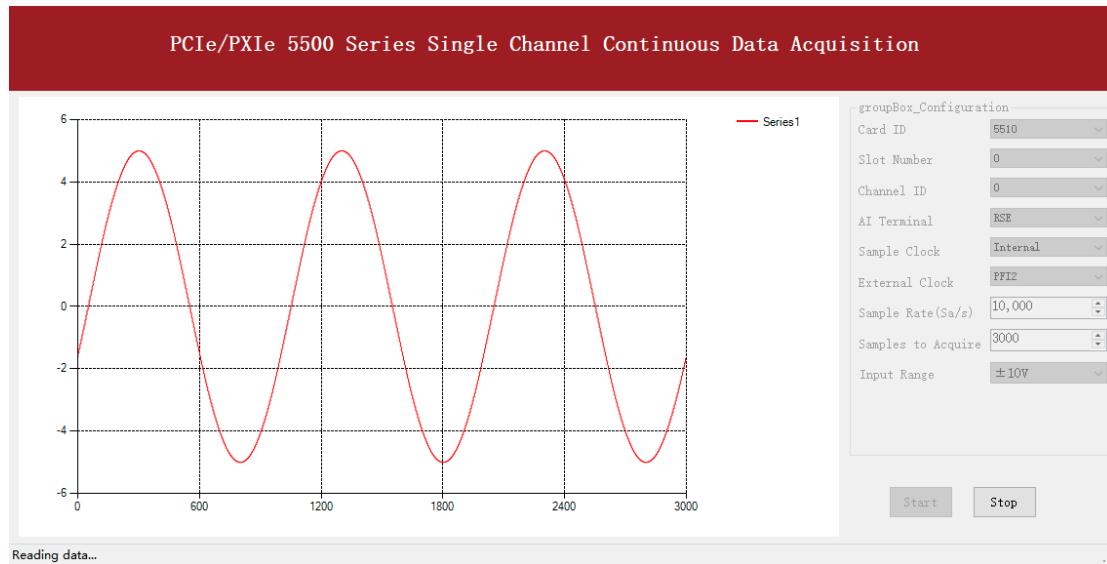


Figure 39 AI Acquisition Signal

- The analog signal is successfully generated and received by JY-5500.

6.6.2 Continuous NoWrapping Output

The continuous acyclic output needs to write a piece of data before starting the AO. After the AO starts, user needs to continuously write new data to ensure the continuous output of the AO.

Learn by Example 6.6.2

- Connect JY-5500 AO Ch0 (AO0, Pin #22) to AI Ch0 (AI0+, Pin#68), Ground of AO0 (AO_GND, Pin#55) to Ground of AI0 (AI_GND, Pin#67). (AI0+, AI_GND) consists of a RSE input; (AO0, AO_GND) consists of an output.
- JY-5500 sends an analog signal through (AO0, AO_GND) and reads back the signal from (AI0+, AI_GND).
- Open **Analog Input-->Winform AI Continuous**, set the following numbers as shown.

Card ID	5510
Slot Number	0
Channel ID	0
AI Terminal	RSE
Sample Clock	Internal
External Clock	PFI2
Sample Rate (Sa/s)	10,000
Samples to Acquire	3000
Input Range	±10V

StartStop

...

Figure 40 AI Continuous Parameters

- Click **Start** to start the data acquisition.
- Open **Analog Output-->Winform AO Continuous NoWrapping**, set the following numbers as shown:

Card ID

5510

Update Rate(Sa/s)

1,000,000

Solt Number

0

Output Range

$\pm 10V$

Channel ID

0

Waveform Configuration

Wave Type

Wave Amplitude

Wave Frequency

SineWave

5

10

Start

Update

Stop

Figure 41 AO ContinuousNoWrapping Output Params

- In no wrapping analog output you can change the parameter of the signal whenever you want in **Waveform Configuration** when generating the wave. After the configuration you should click **Update** to apply the changes.
- Click **Start** to generate a sine wave first. The result is shown below.



Figure 42 AO ContinuousNoWrapping Signal

- And the received signal is shown below.

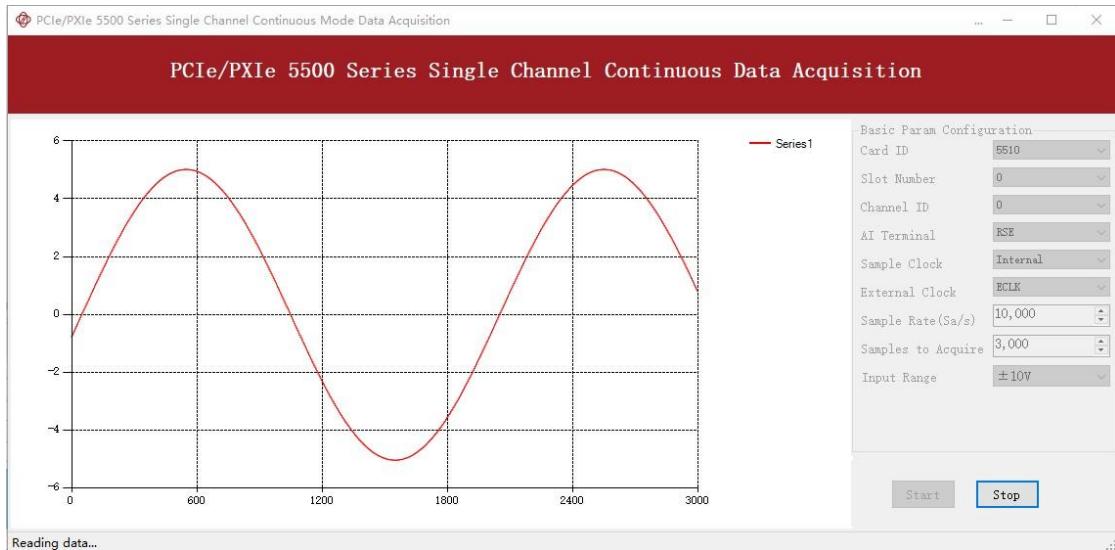


Figure 43 AI Acquisition AO Sin Signal

- Now change the **Wave Type** to **SquareWave** and click **Update** to generate it. The result is shown below.

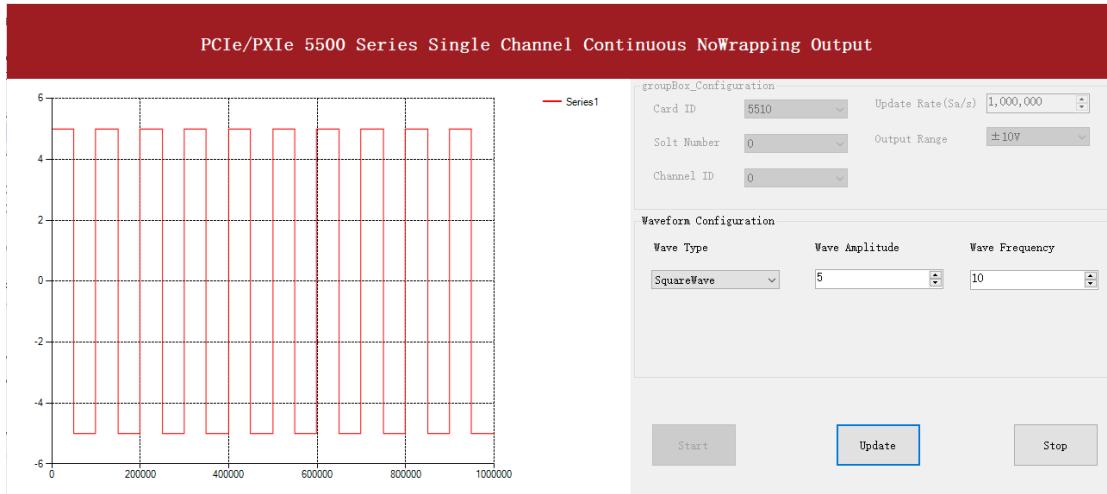


Figure 44 Update AO Square Signal

- And the received signal is shown below.

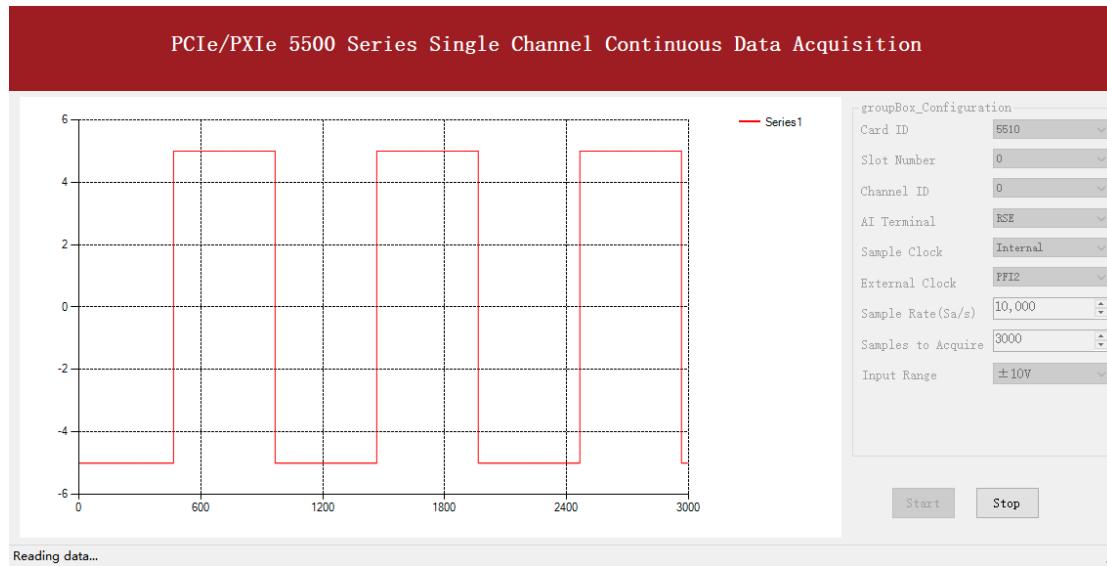


Figure 45 AI Acquisition AO Square Signal

- The analog signal is successfully generated and received by JY-5500.

6.6.3 Continuous Wrapping Output

The continuous loop output first writes a piece of data before starting the AO. After the AO starts, the board will repeatedly output this data until user sends a stop command.

Learn by Example 6.6.3

- Connect JY-5500 AO Ch0 (AO0, Pin #22) to AI Ch0 (AI0+, Pin#68), Ground of AO0 (AO_GND, Pin#55) to Ground of AI0 (AI_GND, Pin#67). (AI0+, AI_GND) consists of a RSE input; (AO0, AO_GND) consists of an output.
- JY-5500 sends an analog signal through (AO0, AO_GND) and reads back the signal from (AI0+, AI_GND).
- Open **Analog Input-->Winform AI Continuous**, set the following numbers as shown.

Card ID	5510
Slot Number	0
Channel ID	0
AI Terminal	RSE
Sample Clock	Internal
External Clock	PF12
Sample Rate(Sa/s)	10,000
Samples to Acquire	3000
Input Range	±10V

Figure 46 AI Continuous Paraments

- Click **Start** to start the data acquisition.
- Open **Analog Output-->Winform AO Continuous Wrapping**, set the numbers as shown.

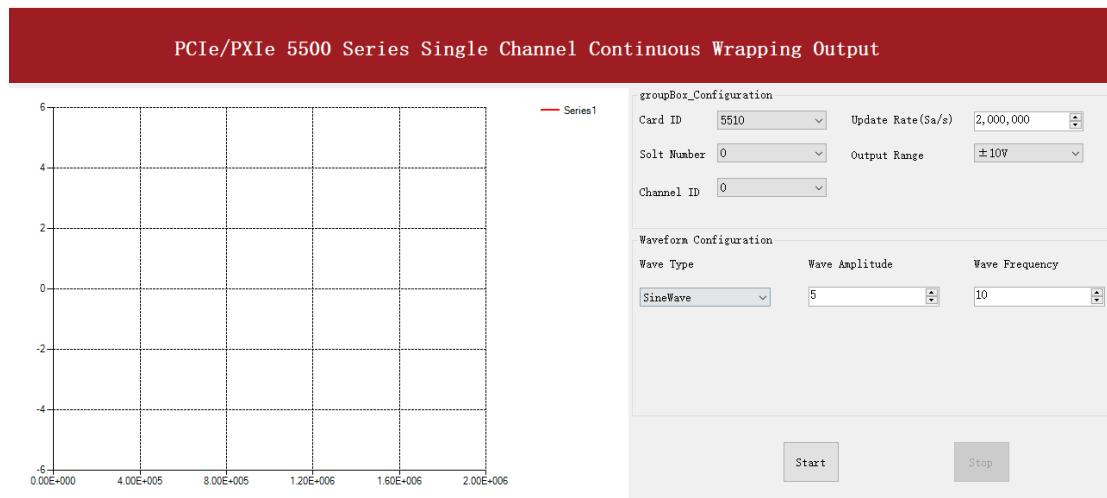


Figure 47 AO Continuous Wrapping Paraments

- Click **Start** to generate the signal. The result is shown below.

Figure 48 AO Continuous Wrapping Signal

- And the received signal is shown below.

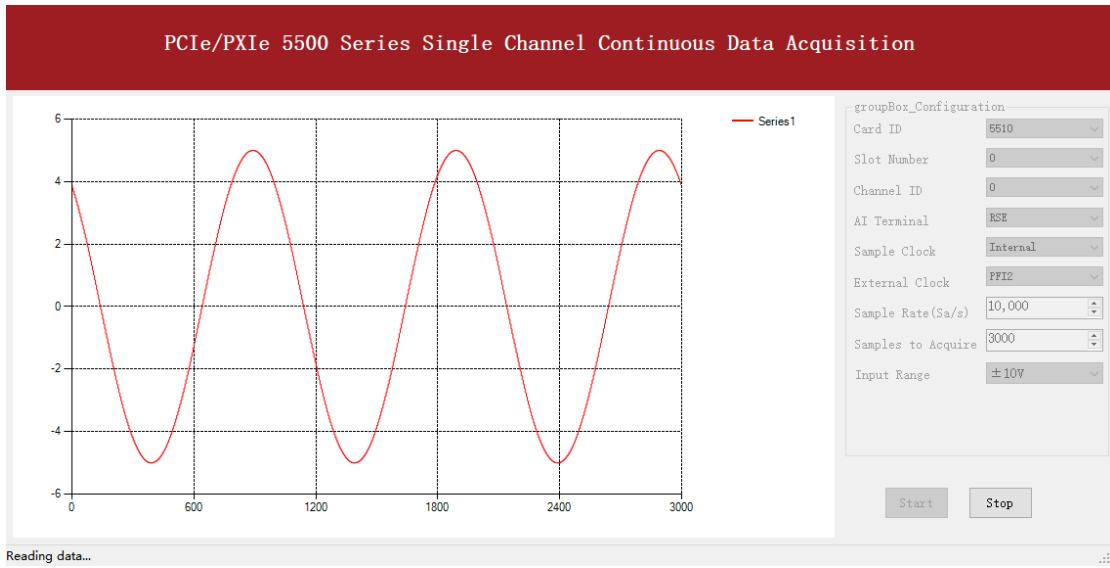


Figure 49 AI Acquisition AO Signal

- The analog signal is successfully generated and received by JY-5500.

6.7 Digital I/O Operations

The JY-5500 provides powerful programmable digital I/O functions.

6.7.1 Static DI/DO

Programmable I/O supports static TTL, 6 ports (0,1,2,3,4,5) which are in total 48 digital I/O channels. User can access these I / O information through software polling.

Learn by Example 6.7.1

- In this example JY-5500 outputs a digital signal by its DO function and reads it back by its DI function.
- Connect Connector1 of JY-5500 to the TB-68 terminal block according to Figure 3.
- Connect Port 1/Line 0~7 (P1.0~P1.7) to Port 2/Line 0~7 (P2.0~2.7). JY-5500 sends a digital signal through Port 1 and reads the signal back from Port 2.
- Open the first program **Digital Output-->Winform DO SinglePoint**.
- Select **port 1** for **Digital Output**, Set Line 1,3,5,7 in High-Level positions, make sure all other lines are in Low-Level positions. Click **Start** to generate the High-Levels as shown.

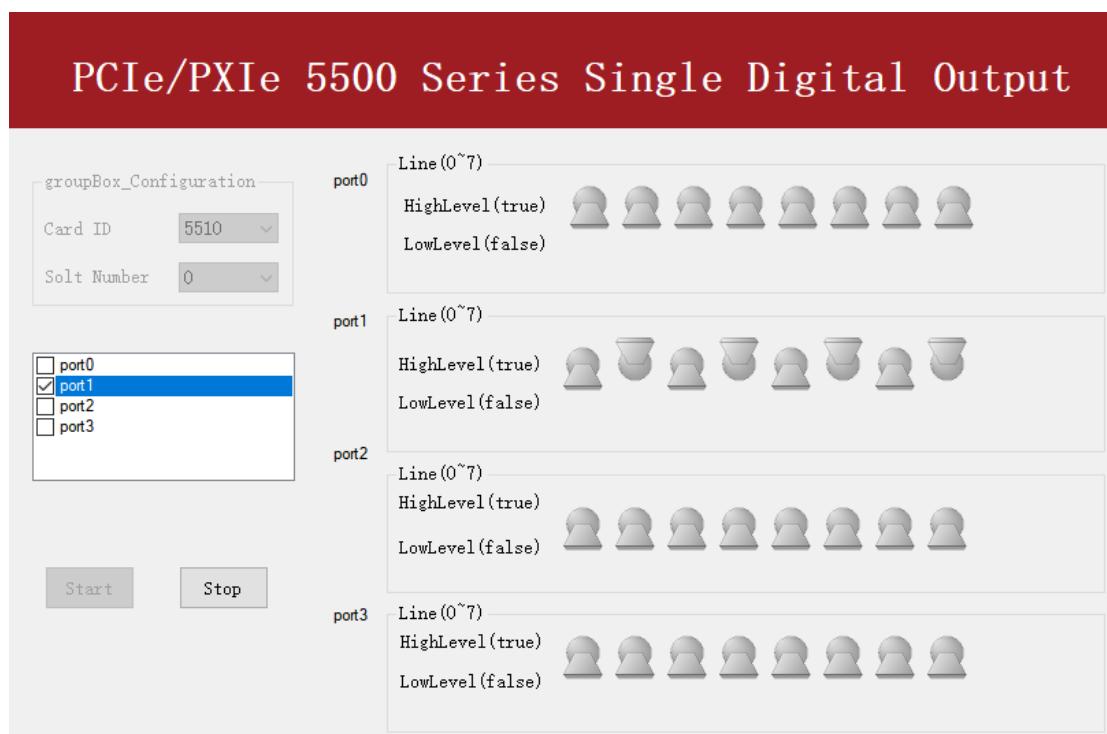


Figure 50 Single Digital Output

- Open the second program **Digital Input-->Winform DI SinglePoint**.

- Select **port 2** for **Digital Input** as shown, and click **Check DI Status**. The result is shown below.

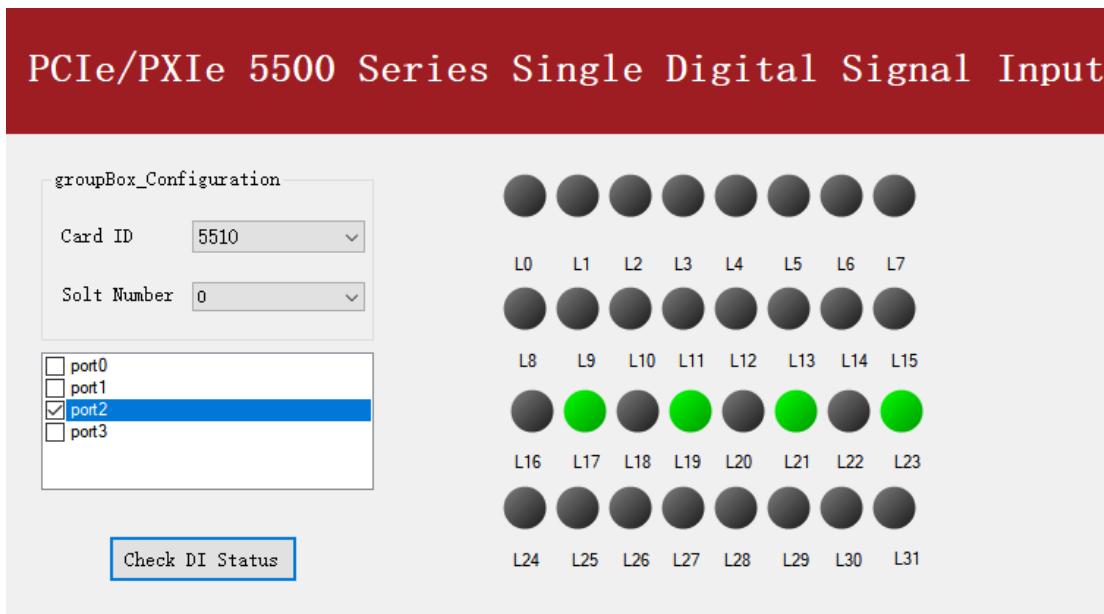


Figure 51 Single Digital Input

- The result matches the high and low levels set before.

6.7.2 Dynamic DI/DO

The JY-5500 supports both dynamic DI/DO operation with a maximum sample rate (update rate) of up to 10MHz. User can acquire or output digital waveforms in this way.

Learn by Example 6.7.2

- In this example JY-5500 outputs a squarewave by its DO function and reads it back by its DI function.
- Connect Connector1 of PCIe/PXIe-5510/5511 or Connector0 of PCIe/PXIe-5515/5516 to the TB-68 terminal block according to Figure 3.
- Connect PCIe/PXIe-5510/5511 Port 1/Line 0~7 (P1.0~P1.7) to Port 2/Line 0~7 (P2.0~2.7) or PCIe/PXIe-5515/5516 Port 0/Line 0~7 (P0.0~P0.7) to Port 1/Line 0~7 (P1.0~1.7). JY-5500 sends digital signals through Port 1/Port 0 and reads them back from Port 2/Port 1.
- Open **Digital Input-->Winform DI Continuous** and set the numbers as shown. Select **port 2**(PCIe/PXIe-5510/5511) or **port 1**(PCIe/PXIe-5515/5516).

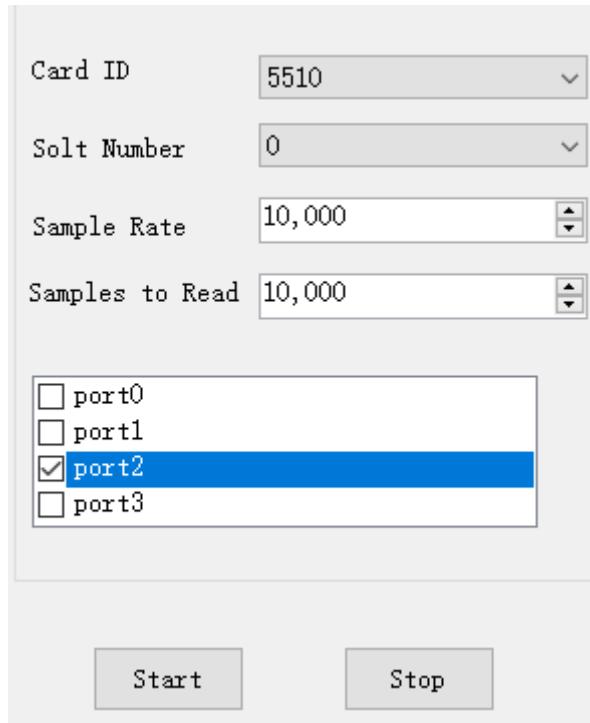


Figure 52 DI Continuous Parameters

- Click **Start** to begin the data acquisition.
- Open **Digital Output--> Winform DO Continuous NoWrapping** and set the numbers as shown.
- Click **Start** to generate the signal. The result is shown below.

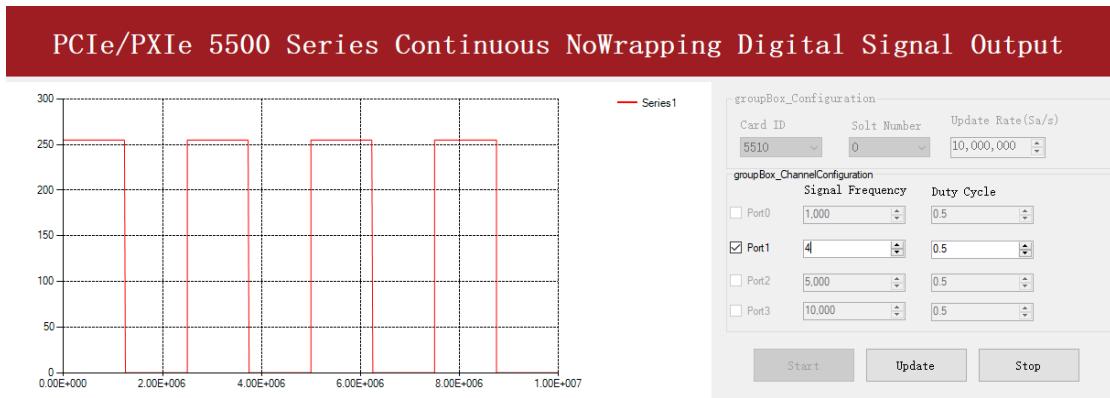


Figure 53 DO ContinuousNoWrapping Output

- In program **Winform DI Continuous**, you can see the acquired signal. Select **port 1**(PCIe/PXIe-5510/5511) or **port 0**(PCIe/PXIe-5515/5516).

PCIe/PXIe 5500 Series Continuous Digital Signal Input



Figure 54 DI Continuous Acquisition

- The digital signal is successfully generated and acquired by JY-5500.

6.8 Counter Input Operations

The JY-5500 has four or two identical 32 bits timers/counters.

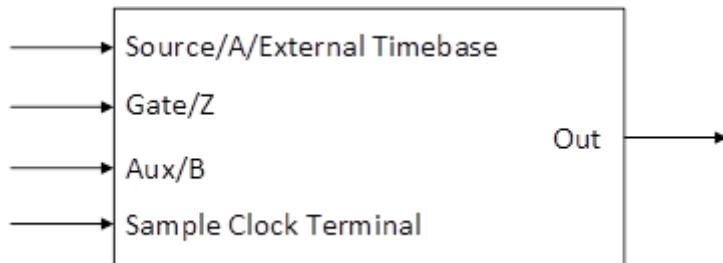


Figure 55 Counter Terminal

Each counter has seven input terminals and one output terminal, and these terminals have different functions in different counter input application types, including:

- Edge Counting
- Pulse Measurement
- Frequency Measurement
- Period Measurement
- Two-Edge Separation
- Quadrature Encoder (X1, X2, X4)
- Two-Pulse Encoder

For buffered acquisition, each counter has a separate DDR storage space and requires a sample clock.

For each counter input application type, the measured signal needs to be connected to different terminals, as shown in the following table.

Measured Signal	Terminal
Edge Counting	Source
Pulse Measurement	Gate
Frequency Measurement	Gate
Period Measurement	Gate
Two-Edge Separation	Gate、Aux
Quadrature Encoder (X1, X2, X4)	A、B、Z
Two-Pulse Encoder	A、B

Figure 56 Counter Signal Wiring Instruction

6.8.1 Edge Counting

The counter counts the number of active edges of input signal.

Timing

1) Single Mode

The count value is written to the register on each rising edge or falling edge of the signal to measure as shown in Figure 57.

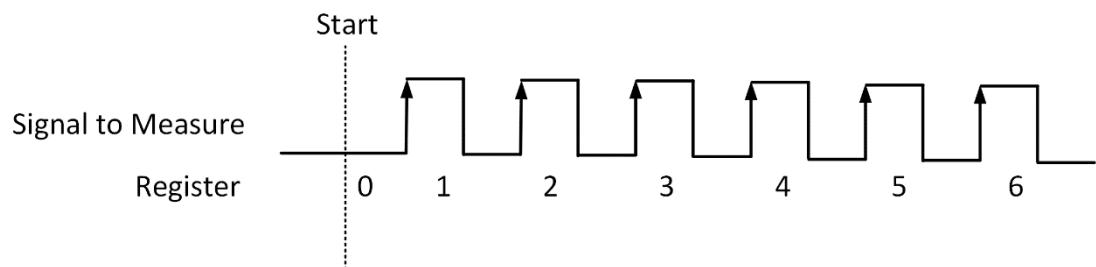


Figure 57 Simple Edge Counting in Single Mode

2) Finite/Continuous Mode with Internal Sample Clock

The count value is stored into the buffer on each rising edge or falling edge of the sample clock as shown in Figure 58.

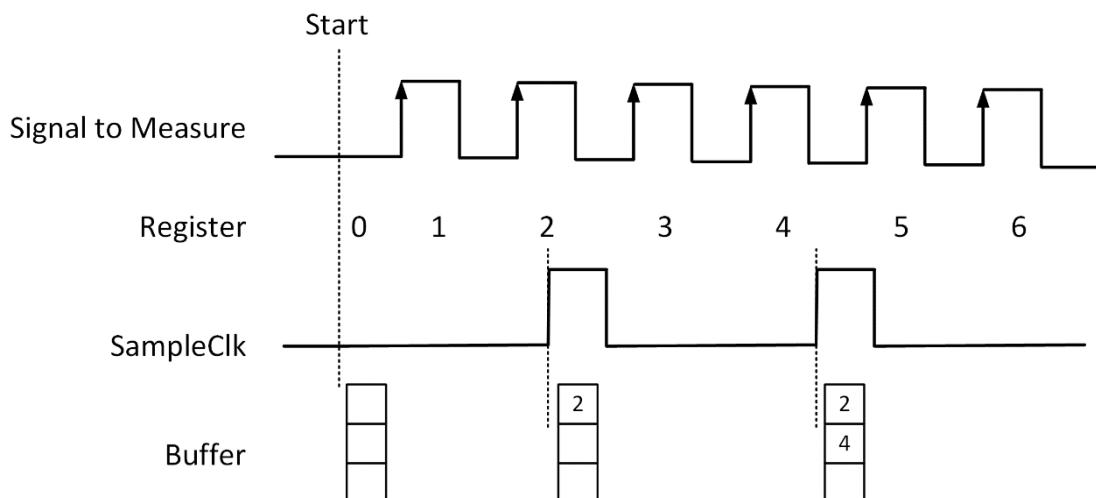


Figure 58 Buffered Edge Counting with Internal Sample Clock

3) Finite/Continuous Mode with Implicit Sample Clock

The count value is stored into the buffer on each rising edge or falling edge of the signal to measure as shown in Figure 59.

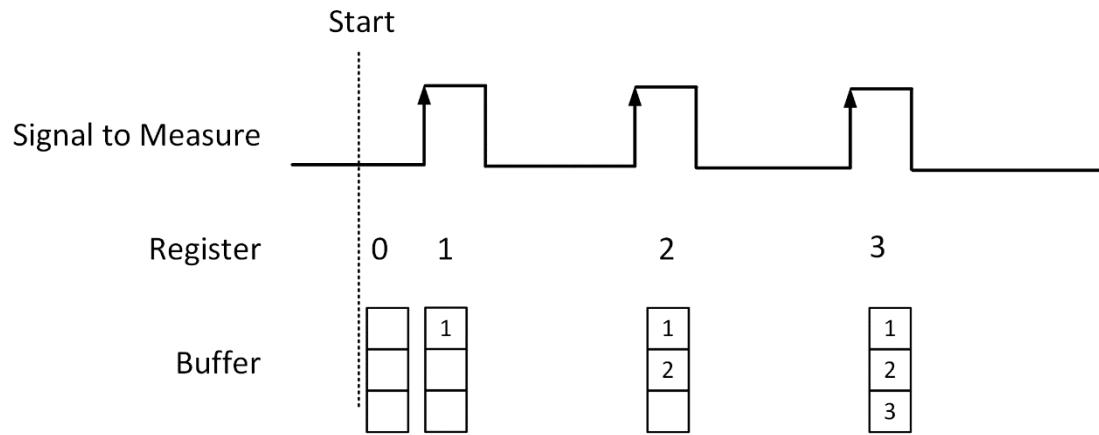


Figure 59 Simple Edge Counting with Implicit SampleClk

Pause Trigger

Pause trigger is used to pause counting when the input signal is active depending on active polarity configuration as shown in Figure 60. Default, the Pause Trigger signal must be connected to Counter Gate terminal.

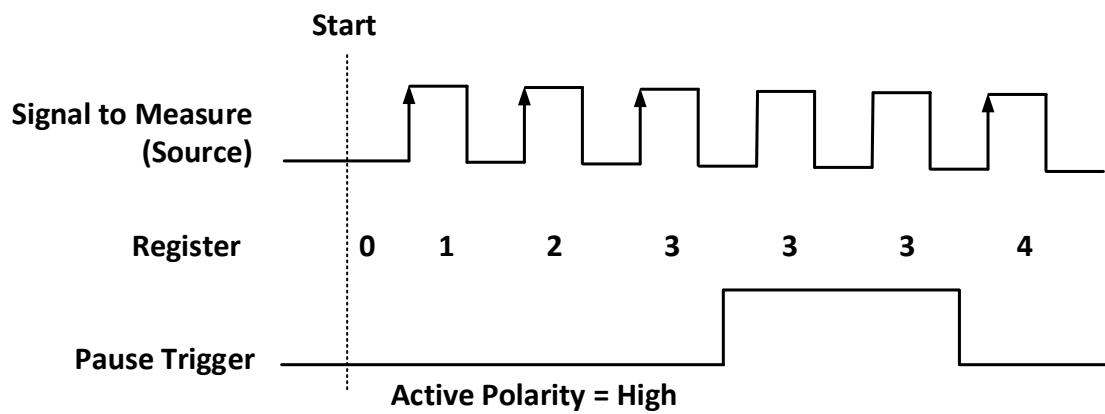


Figure 60 Pause Trigger

To configure the pause trigger, use the properties as below:

- `JY5500CITask.EdgeCounting.Pause.ActivePolarity` - To set active level (high or low) to pause counting.

Counting Direction

User can control the counting direction through software configuration or by an input signal with AUX terminal. When using an input signal to control the counting direction, the counter counts up when the signal is high and counts down when the signal is low as shown in Figure 61.

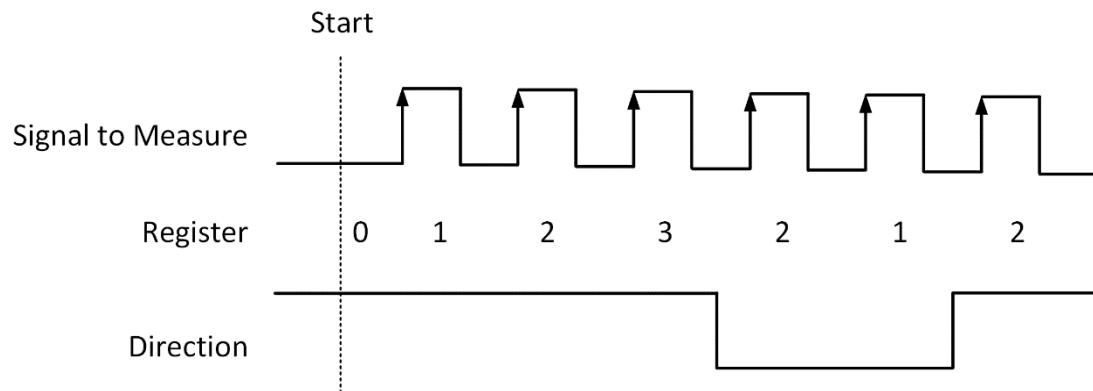


Figure 61 Count Direction

Learn by Examples6.8.1

- Connect the signal source's positive terminal of a signal source to PCIe-5510 counter0's edge counting source (CTR0_Source/A, Pin#11), negative terminal to the ground (DGND, Pin#44) as shown in Figure 2 and Figure 3. (CTR0_Source, DGND) consists of an edge counting counter input and they share the same ground.
- Set a squarewave signal (f=1Hz, Vpp=5V).

Single Mode

- Open **Counter Input-->Winform CI Single EdgeCounting**, set the following numbers as shown:

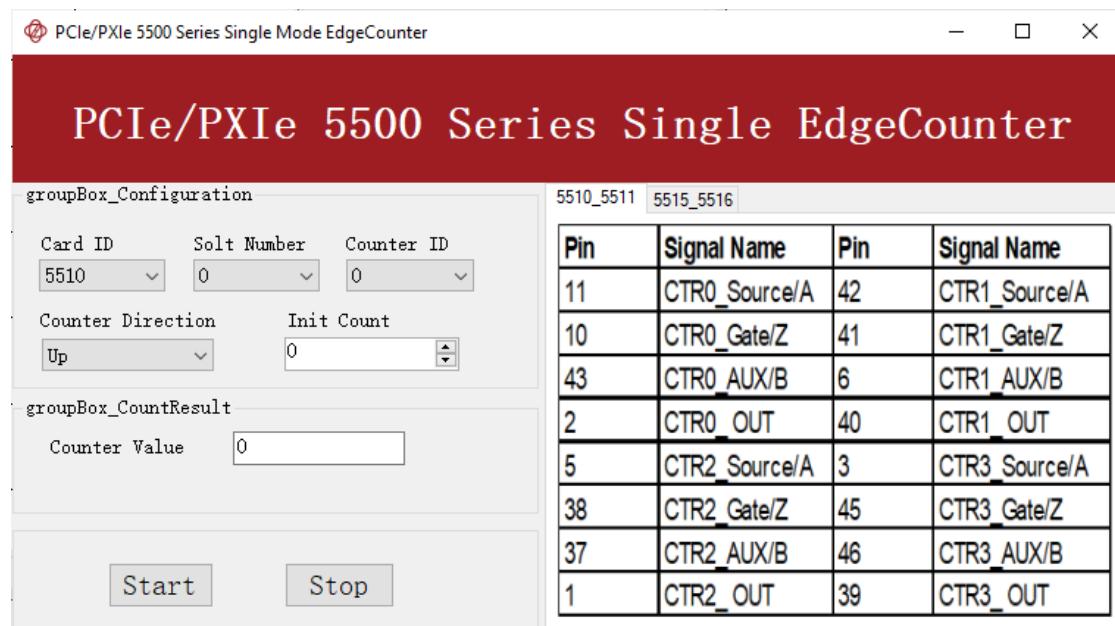


Figure 62 EdgeCounting For Single Mode

- Counter Direction is set by **Counter Direction**.
- The table in the sample program is a connection diagram for your convenience.
- The *rising edge counter* works when **Start** is clicked.
- The result is shown by **Counter Value**. In this example the **Counter Value** increases by 1 every second for a 1Hz sinewave.

Finite/Continuous Mode

- Change the squarewave frequency to 50 Hz.
- Open **Counter Input-->Winform CI Finite/Continuous EdgeCounting**, set the following numbers as shown:

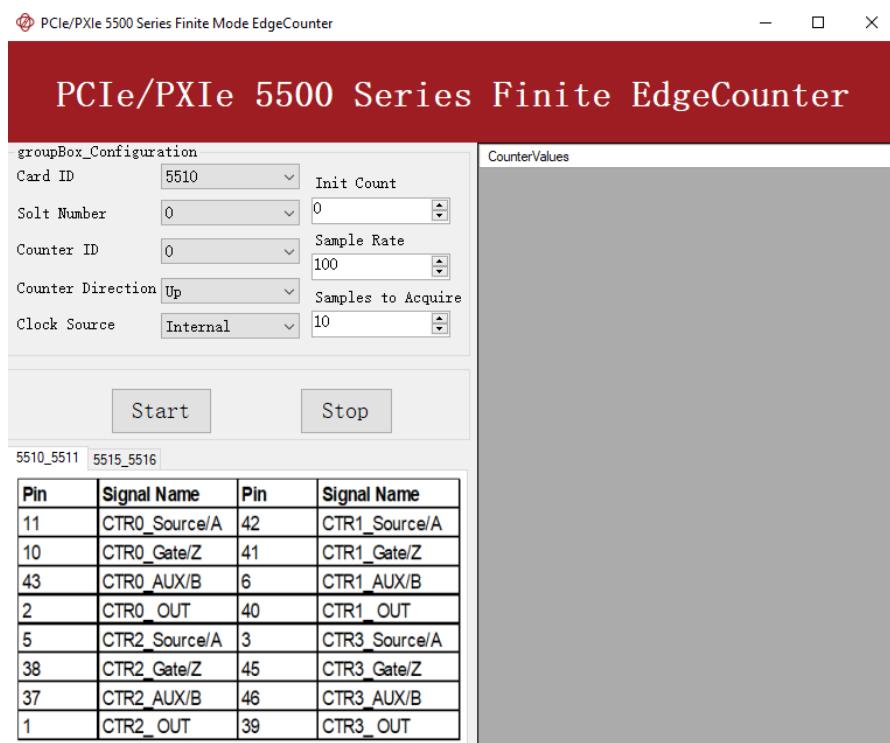


Figure 63 EdgeCounting For Finite Mode

- The table in the sample program is a connection diagram for your convenience.
- Counter Direction is set by **Counter Direction**.
- There are two clock sources in JY-5500 *Internal* and *Implicit*: This example uses **Internal** mode set by **Clock Source**.
- Click **Start** to start counting by rising edge. The result is shown below:

CounterValues
0
1
1
2
2
3
3
4
4
5

Figure 64 Counter Values For Internal Clock

- The numbers are stored in a buffer **CounterValues**.
- Change the **Clock Source** to **Implicit**:

CounterValues
1
2
3
4
5
6
7
8
9
10

Figure 65 Counter Values For Implicit Clock

- The numbers are stored in a buffer **CounterValues**.
- The counter values are different as before because of the change from **Clock Source**.

6.8.2 Pulse Measurement

The counter measures the high-level and low-level duration of signal.

Timing

1) Single Mode

The count value of the duration of the high-level or low-level is written to the register on each rising or falling edge of the pulse to measure, as shown in Figure 66.

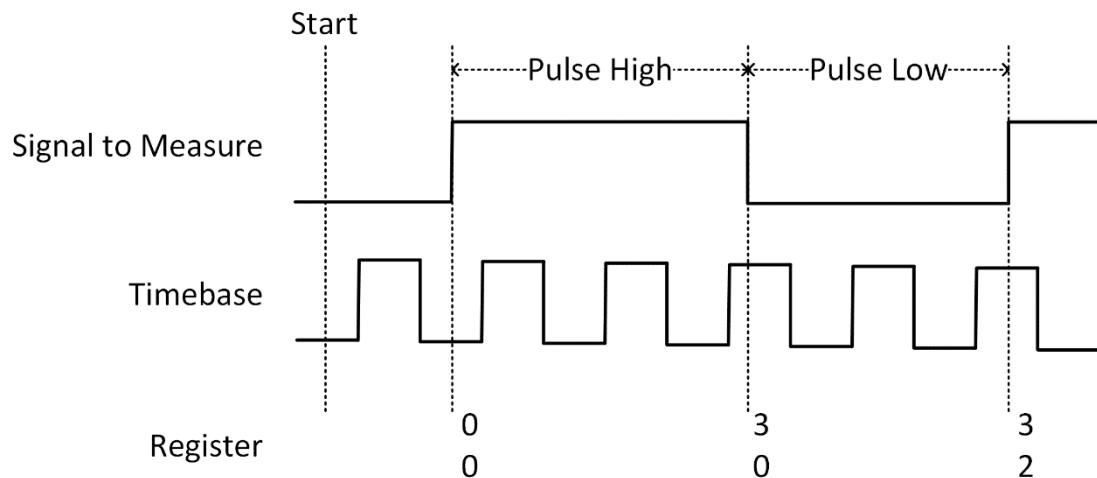


Figure 66 Pulse Measurement in Single Mode

2) Finite/Continuous Mode with Internal Sample Clock

The count value of the duration of the high or low level is stored into the buffer on each rising or falling edge of the sample clock, as shown in Figure 67.

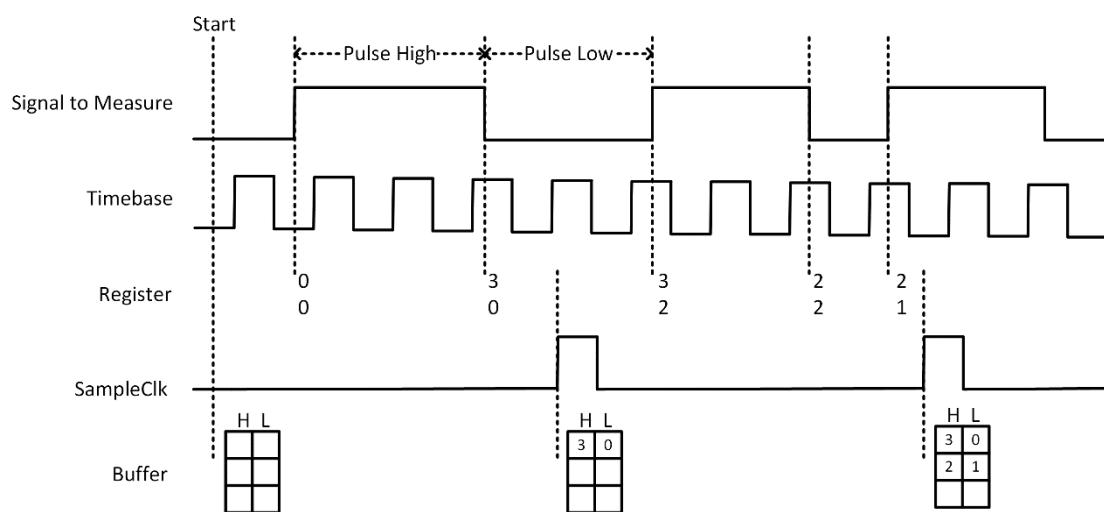


Figure 67 Pulse Measurement with Internal SampleClk

3) Finite/Continuous Mode with Implicit Sample Clock

The count value of the duration of the high-level or low-level is stored into the buffer on each rising or falling edge of the pulse to measure, as shown in Figure 68.

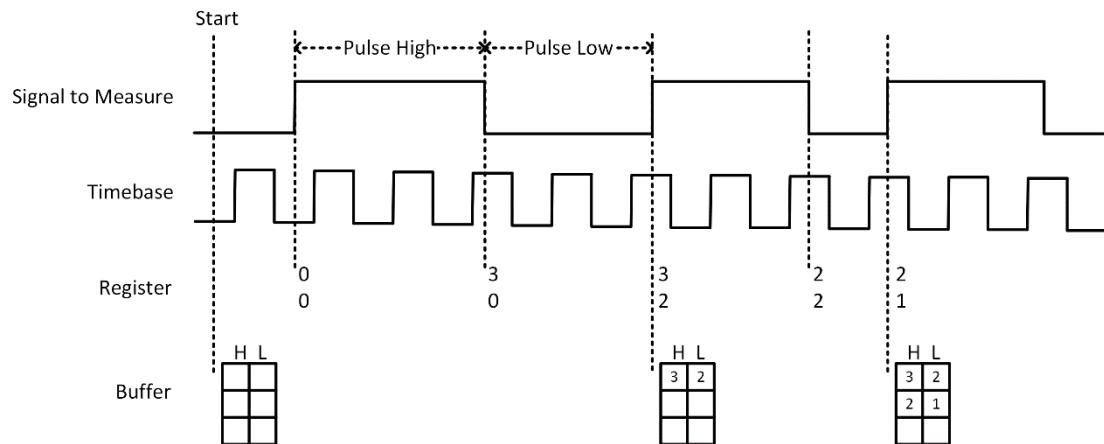


Figure 68 Pulse Measurement with Implicit SampleClock

Learn by Examples 6.8.2

- Connect the signal source's positive terminal to PCIe-5510 counter0's pulse measure source (CTR0_Gate/Z, Pin#10), negative terminal to the ground (DGND, Pin#44) as shown in Figure 2 and Figure 3. (CTR0_Gate/Z, DGND) consists of a pulse measure counter input and they share the same ground.
- Set a squarewave signal (f=1Hz, Duty Cycle=50%, Vpp=5V).

Single Mode

- Open **Counter Input-->Winform CI Single PulseMeasure**, set the following numbers as shown:

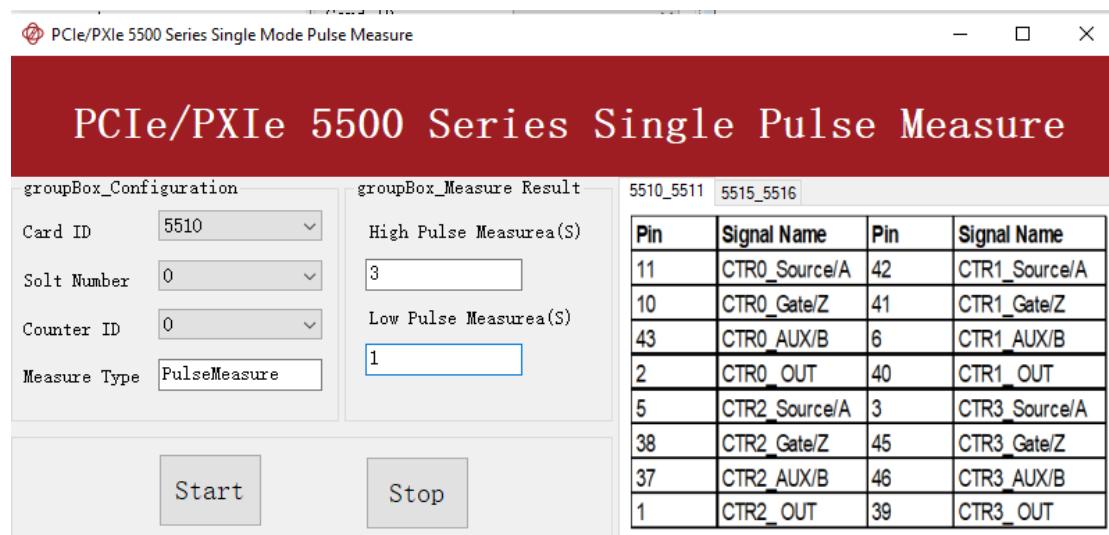


Figure 69 Pulse Measure For Single Mode

- The table in the sample program is a connection diagram for your convenience.
- Click **Start** to start measuring the pulses. The result is shown by **High Pulse Measure(S)** and **Low Pulse Measure(S)**:

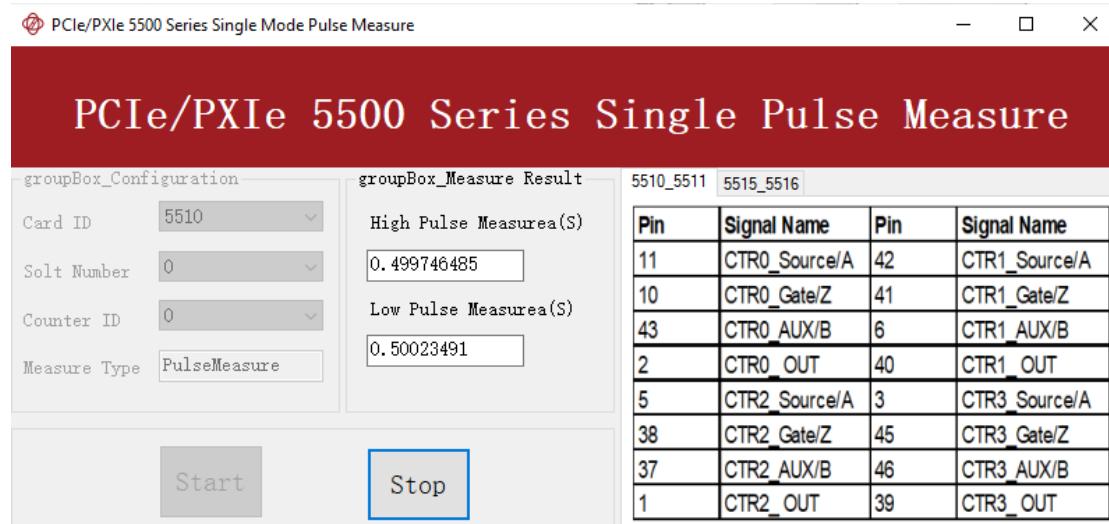


Figure 70 Pulse Measure Value For Single Mode

- The numbers show the duration of **High/Low Pulse** in one signal period and match the duty cycle set before.

Finite/Continuous Mode

- Change the frequency of Squarewave to 50 Hz.

- Open Counter Input-->Winform CI Finite/Continuous PulseMeasure, set the following numbers as shown:

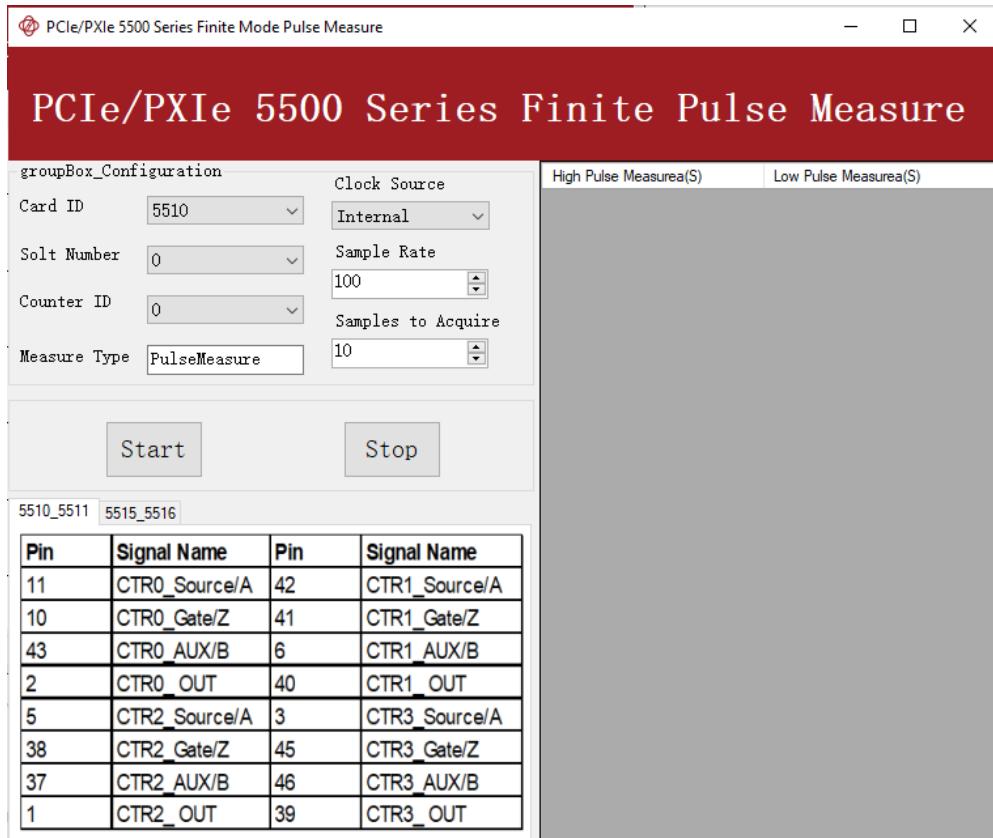


Figure 71 Pulse Measure For Finite Mode

- The table in the sample program is a connection diagram for your convenience.
- Click Start to begin the finite/continuous pulse measurement. The result is shown below:

High Pulse Measurea(S)	Low Pulse Measurea(S)
0	0
0.01000478	0
0.01000478	0.00999485
0.01000478	0.00999485
0.01000478	0.00999485
0.01000477	0.00999485
0.01000477	0.00999486
0.01000477	0.00999486
0.01000477	0.00999486
0.01000477	0.00999486

Figure 72 Pulse Measure Values For Finite Mode

-
- The numbers show the duration of **High/Low Pulse** in one signal period and match the duty cycle set before.
 - Please refer to **Learn by Examples Finite/Continuous** Mode about the difference between Internal and Implicit.

6.8.3 Frequency Measurement

The counter measures the frequency of signal to measure.

Timing

1) Single Mode

Frequency Measurement without sample clock is actually using Pulse Width Measurement internally, refer to chapter 6.8.2 for more information.

Every time the user reads the data, driver will automatically calculate the frequency (f_x) according to the HighTick ($tick_h$), LowTick ($tick_l$) values and known frequency of the timebase (f_{base}) according to the formula 1 and return the result to the user.

$$f_x = f_{base} \times \frac{1}{tick_h + tick_l}$$

To configure the counter to work in this mode, set JY-5500CITask.Mode to CIMode.Single.

2) Finite/Continuous Mode with Internal Sample Clock ([Averaging](#))

Between every two rising edges of the sample clock, the counter counts the numbers of full periods ($T1$) of the signal to measure, and the number of rising edges of timebase ($T2$) during those full periods. These two values are stored into the buffer on each rising edge of the sample clock, as shown in Figure 73.

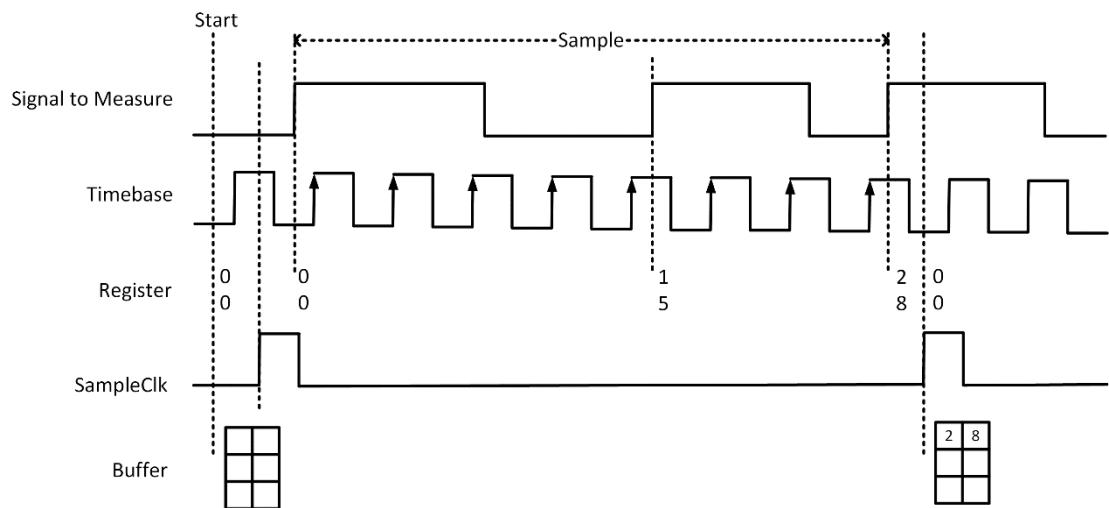


Figure 73 Frequency Measurement with Internal Sample Clock

Every time the user reads the data, driver will automatically calculate the frequency (f_x) according to the buffered values and known frequency of the timebase (f_{base}) by using following formula and return the result to user.

$$f_x = f_{base} \times \frac{T1}{T2}$$

3) Finite/Continuous Mode with Implicit Sample Clock

Frequency Measurement with implicit sample clock is actually using Pulse Measurement internally. refer to chapter 6.8.2 for more information.

Every time the user reads the data, driver will automatically calculate the frequency (f_x) according to the HighTick (T_h) and LowTick (T_l) values according to the formula 1 and return the result to the user.

$$f_x = \frac{1}{T_h + T_l}$$

Learn by Examples 6.8.3

- Connect the signal source's positive terminal to PCIe-5510 counter0's frequency measure source (CTR0_Gate/Z, Pin#10), negative terminal to the ground (DGND, Pin#44) as shown in Figure 2 and Figure 3. (CTR0_Gate/Z, DGND) consists of a frequency measure counter input and they share the same ground.
- Set a squarewave signal (f=50Hz, Duty Cycle=50%, Vpp=5V).

Single Mode

- Open Counter Input-->Winform CI Single Frequency Measure and click Start. The result is shown below by Frequency Measure (Hz):

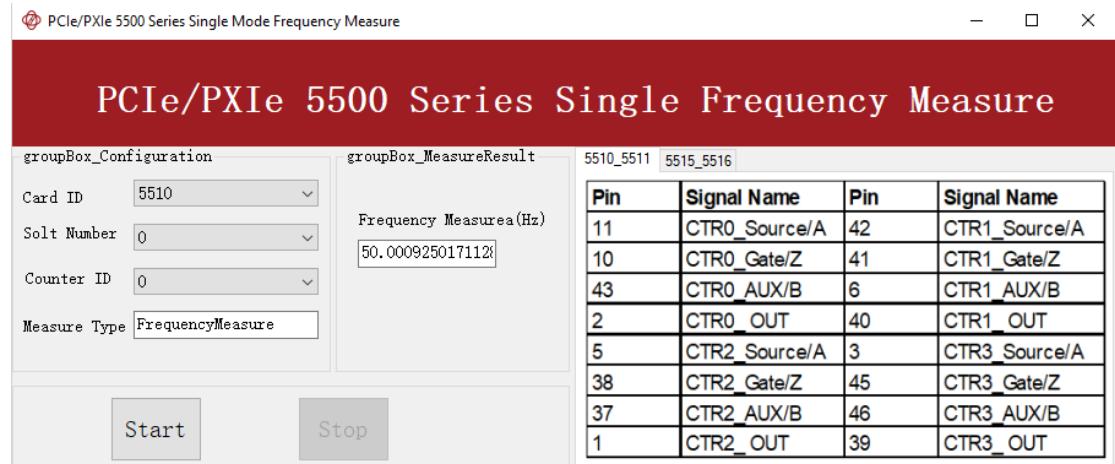
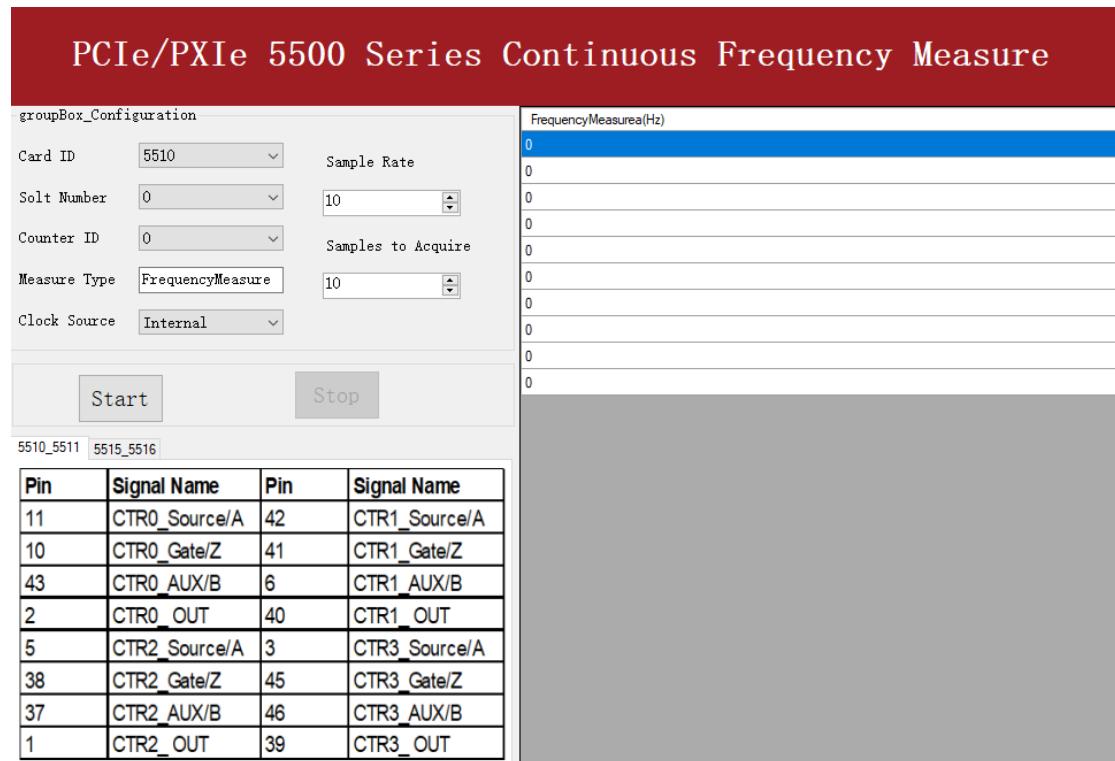



Figure 74 Frequency Measure For Single Mode

- The table in the sample program is a connection diagram for your convenience.
- The result matches the frequency set before.

Finite/Continuous Mode

- Open Counter Input-->Winform CI Finite/Continuous Frequency Measure.

Figure 75 Frequency Measure For Continuous Mode

- The table in the sample program is a connection diagram for your convenience.
- Internal and Implicit Sample Clocks are set by **Clock Source** as before. (Please refer to Finite/Continuous Mode for more information.)
- Click Start and it will show the frequency 50 as set in the signal resource.

FrequencyMeasure(Hz)
50.0009281422286
50.0009281422286
50.0009343924615
50.0009312673449
50.0009343924615
50.0009281422286
50.0009343924615
50.0009281422286
50.0009281422286
50.0009343924615

Figure 76 Frequency Measure Values

6.8.4 Period Measurement

The counter measures the period of signal to measure. Period Measurements is using Frequency Measurement internally and returns the inverse result of Frequency Measurement. Refer to chapter 6.8.3 for more information.

Learn by Examples 6.8.4

- Connect the signal source's positive terminal to PCIe-5510 counter0's period measure source (CTR0_Gate/Z, Pin#10), negative terminal to the ground (DGND, Pin#44) as shown in Figure 2 and Figure 3. (CTR0_Gate/Z, DGND) consists of a period measure counter input and share the same ground.
- Set a squarewave signal (f=200Hz, Duty Cycle=50%, Vpp=5V).

Single Mode

- Open **Counter Input-->Winform CI Single Period Measure** and click **Start**. The result is shown below by **Period Measure(S)**:

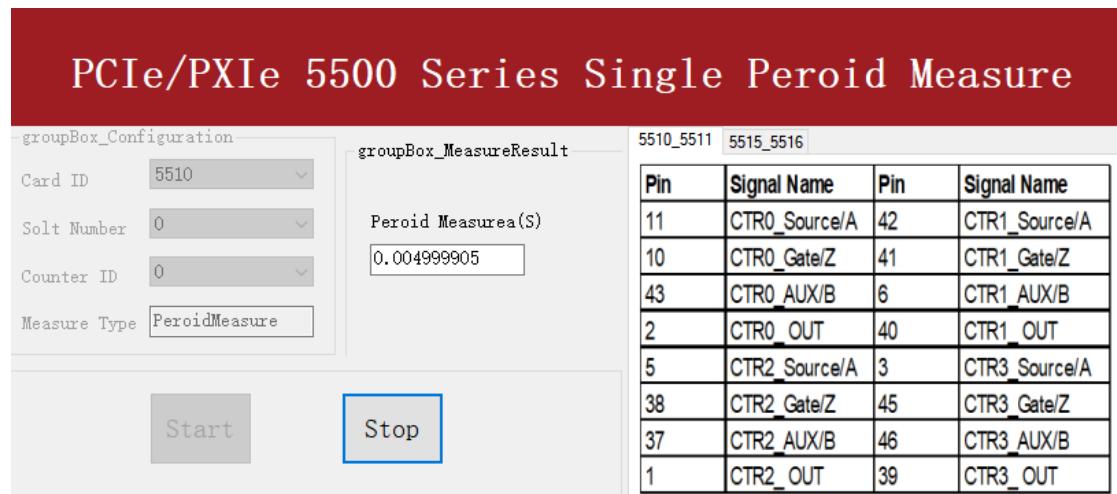


Figure 77 Period Measure For Single Mode

- The table in the sample program is a connection diagram for your convenience.
- The result of **Period Measure(S)** shows the correspond to the frequency set before.

Finite/Continuous Mode

- Open **Counter Input-->Winform CI Finite/Continuous Period Measure** and click **Start**. The result is shown below by **PeriodMeasure (S)**.

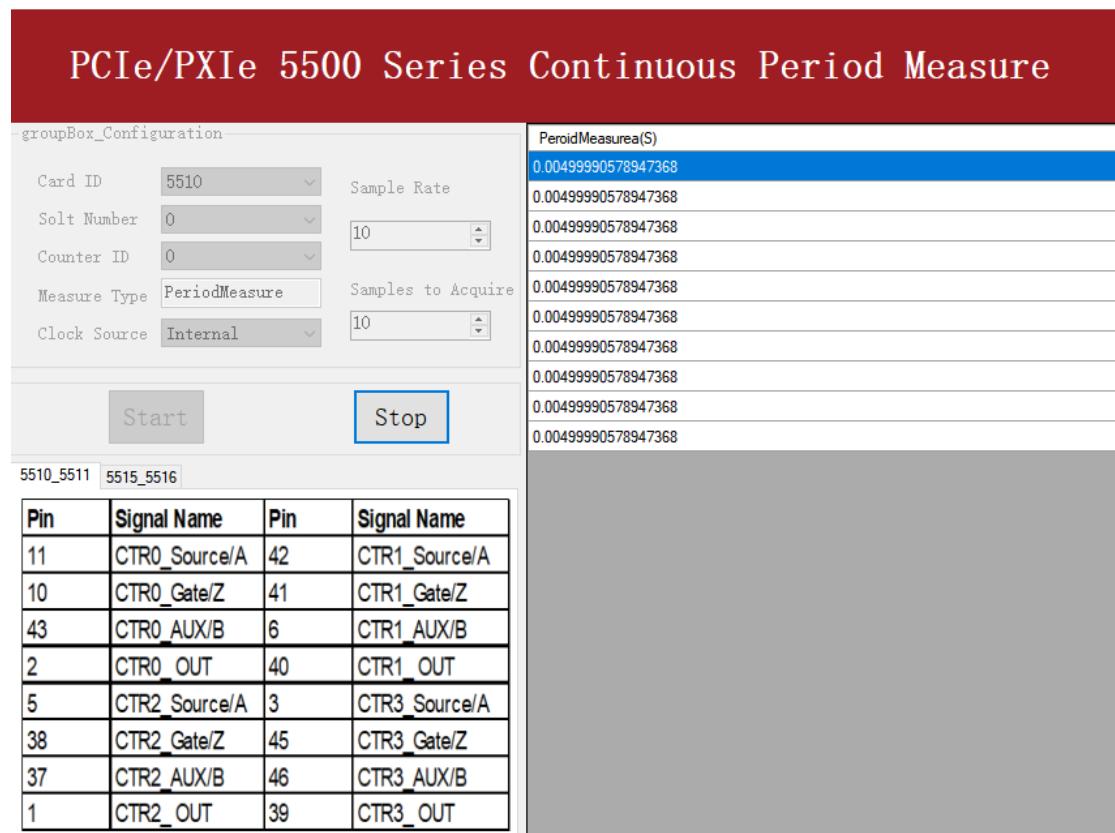


Figure 78 Period Measure For Continuous Mode

- The table in the sample program is a connection diagram for your convenience.
 - The result of **Period Measure(S)** shows the correspond to the frequency set before.

6.8.5 Two-Edge Separation

The counter measures the separation between the rising edges of two signals.

Timing

1) Single Mode

The number of rising edges of timebase between the rising edge of the first signal and the rising edge of the second signal is written to the register on each rising edge of the second signal.

The number of rising edges of timebase between previous rising edge of the second signal and current rising edge of the first signal is written to the register on each rising edge of the first signal as shown in Figure 79.

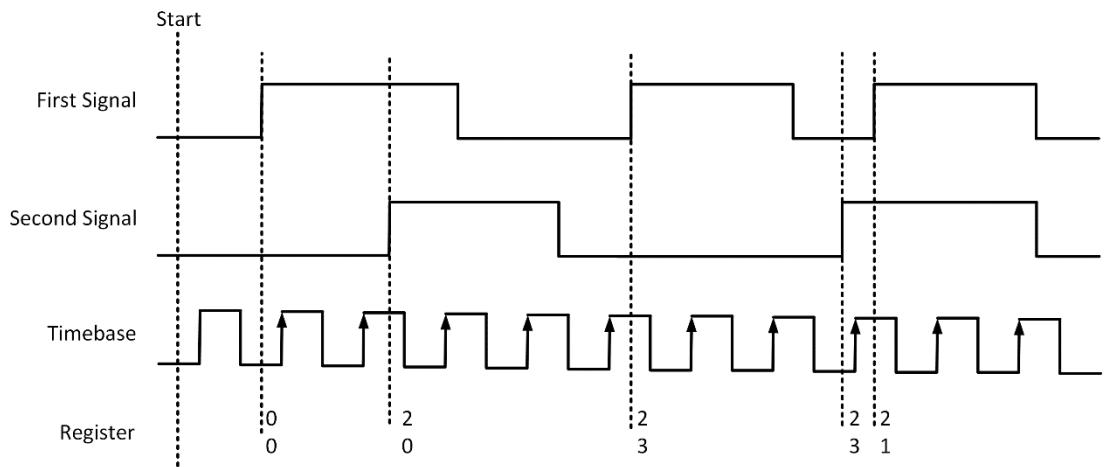


Figure 79 Two-Edge Separation in Single Mode

2) Finite/Continuous Mode with Internal Sample Clock:

The count values of rising edges of timebase between first signal and second signal are stored into buffer on each rising edge of the sample clock, as shown in Figure 80.

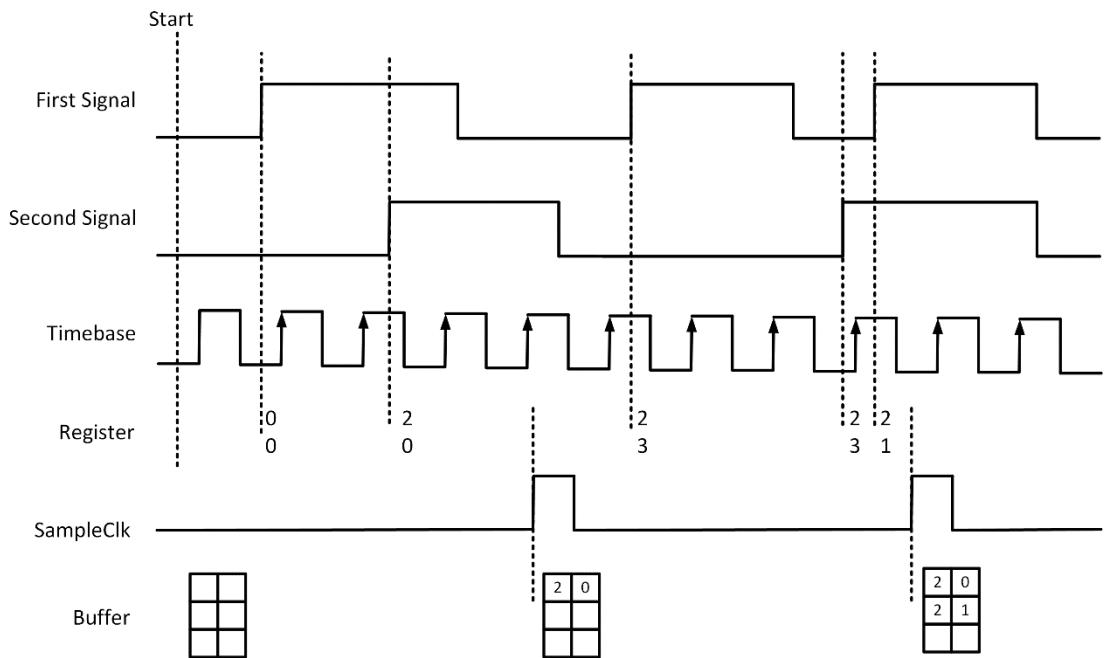


Figure 80 Two-Edge Separation with Internal Sample Clock

3) Finite/Continuous Mode with Implicit Sample Clock

The count values of rising edges of timebase between first signal and second signal are stored into buffer on each rising edge of the first signal, as shown in Figure 81.

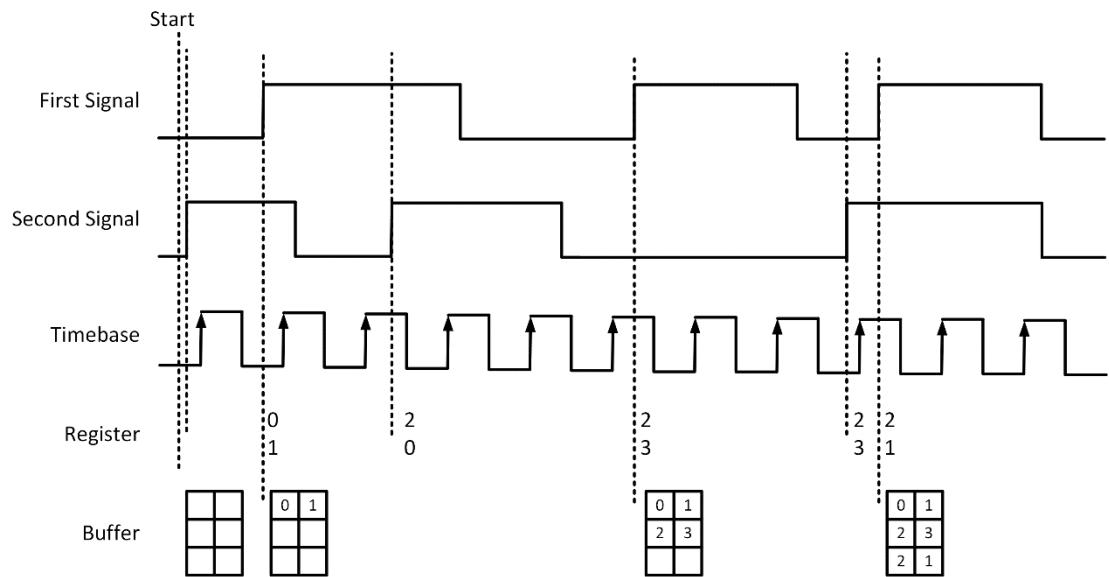


Figure 81 Two-Edge Separation with Implicit Sample Clock

Learn by Examples 6.8.5

- Connect the signal source's two positive terminals to PCIe-5510 first signal input (squarewave, CTR0_Gate/Z, Pin #10) and second signal input (squarewave, CTR0_AUX/B, Pin#43), two negative terminals to the ground (DGND, Pin#44) and (D_GND, Pin#9) as shown in Figure 2 and Figure 3.
- Set a squarewave signal ($f=1\text{Hz}$, $\text{Phase}=0^\circ$) and a squarewave signal ($f=1\text{Hz}$, $\text{Phase}=135^\circ$).

Single Mode

- Open **Counter Input-->Winform CI Single TwoEdgeSeparation Measure** and click **Start**. The result is shown below by **First to Second(S)** and **Second to First(S)**, which represent the time difference between the rising edges of the two signals:

PCIe/PXIE 5500 Series Single TwoEdgeSeparation Measure

groupBox_Configuration

Card ID	5510
Solt Number	0
Counter ID	0
Measure Type	TwoEdgeSeparation

groupBox_MeasureResult

First to Second(S)	0.375481275
Second to First(S)	0.62450008

Start
Stop

		5510_5511	5515_5516
Pin	Signal Name	Pin	Signal Name
11	CTR0_Source/A	42	CTR1_Source/A
10	CTR0_Gate/Z	41	CTR1_Gate/Z
43	CTR0_AUX/B	6	CTR1_AUX/B
2	CTR0_OUT	40	CTR1_OUT
5	CTR2_Source/A	3	CTR3_Source/A
38	CTR2_Gate/Z	45	CTR3_Gate/Z
37	CTR2_AUX/B	46	CTR3_AUX/B
1	CTR2_OUT	39	CTR3_OUT

Figure 82 Two-EdgeSeparation Measure For Single Mode

- The table in the sample program is a connection diagram for your convenience.
 - Due to the phase-difference between First Signal and Second Signal, **First to Second** and **Second to First** are different and summarize as 1.

Finite/Continuous Mode

- Open Counter Input-->Winform CI Finite/Continuous TwoEdge Separation Measure and click Start. The result is shown below by First to Second(S) and Second to First(S), which represent the time difference between the rising edges of the two signals:

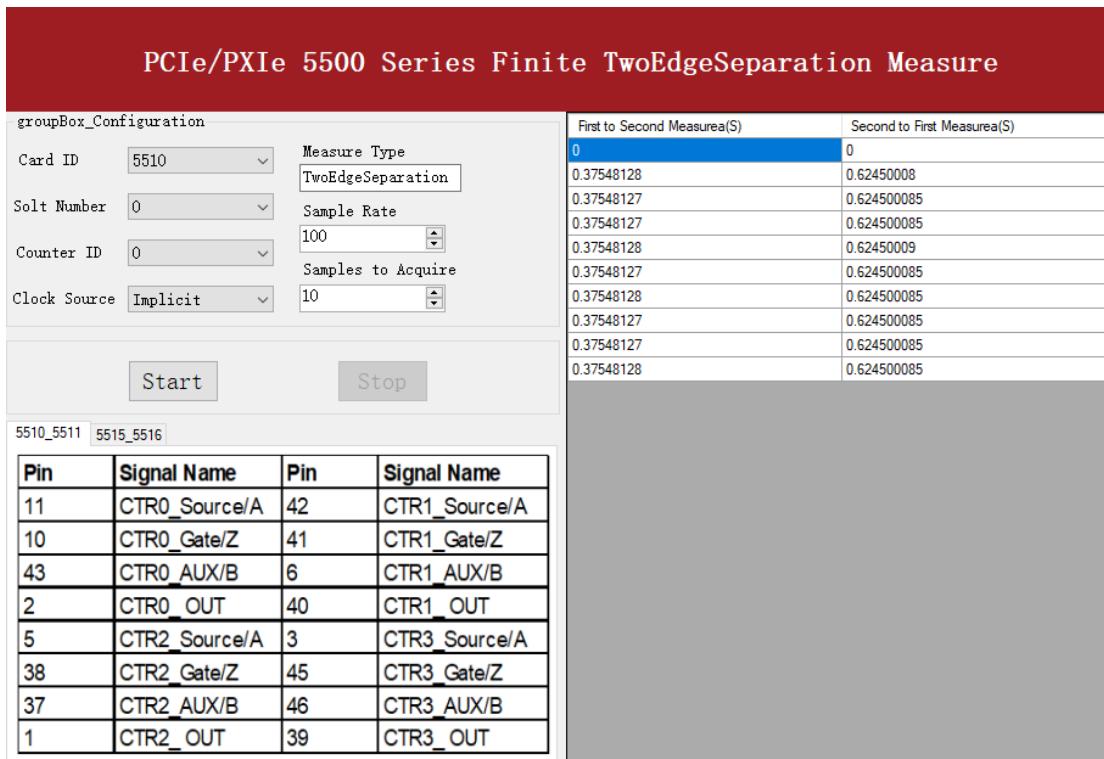


Figure 83 Two-EdgeSeparation Measure For Finite Mode

- The result in this picture is similar to the result in **Single Mode** before.
- The table in the sample program is a connection diagram for your convenience.

6.8.6 Quadrature Encoder

The quadrature encoder includes three encoding types: x1, x2, and x4.

Encoding Type

x1 Encoding

When A leads B, the count increase occurs on the rising edge of A; when B leads A, the count decrease occurs on the falling edge of A as shown in Figure 84.

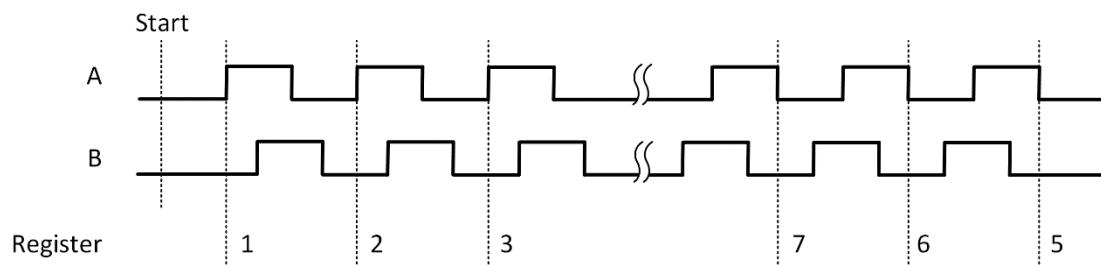


Figure 84 Quadrature Encoder x1 Mode

x2 Encoding

When A leads B, the count increase occurs on the rising edge and the falling edge of A; when B leads A, the count reduction occurs on the rising edge and falling edge of A as shown in Figure 85.

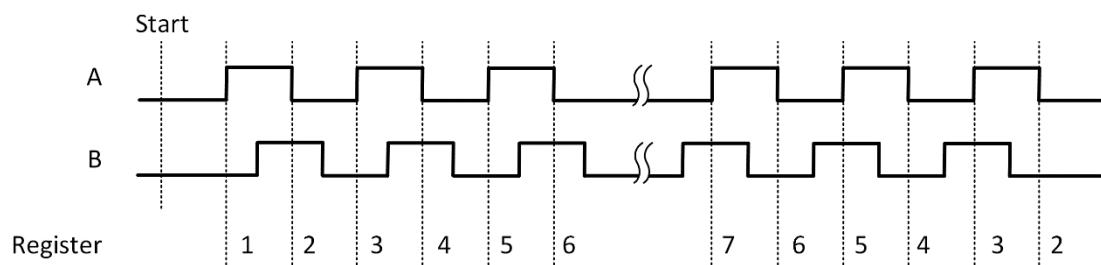


Figure 85 Quadrature Encoder x2 Mode

x4 Encoding

When A leads B, the increase of count occurs on the rising and falling edges of A and B. When B leads A, the decrease in count occurs on the rising and falling edges of A and B. As shown in Figure 86.

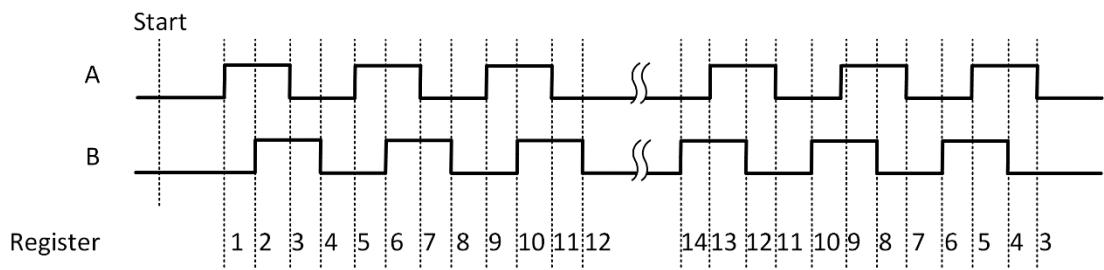


Figure 86 Quadrature Encoder x4 mode

Channel Z Behavior

The phase is reloaded when channel Z is high, A and B are low.

Timing

Take Encoding x1 mode as an example.

1) Single Mode

The count value is written to the register on each rising edge of the signal A, as shown in Figure 57.

To configure the counter to work in this mode, set JY-5500CITask. Mode to CIMode.Single.

2) Finite/Continuous Mode with Internal Sample Clock

The count value is stored into the buffer on each rising edge of the sample clock, as shown in Figure 87.

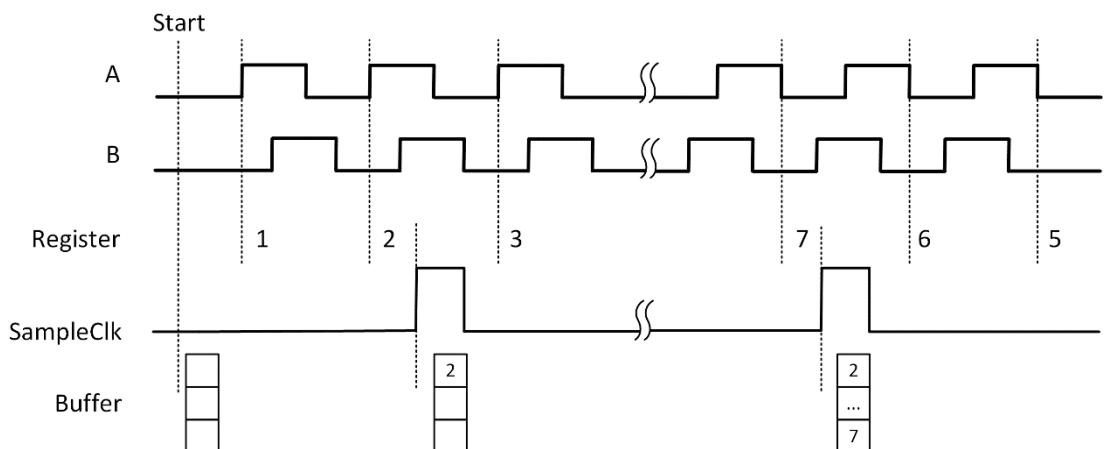


Figure 87 Quadrature Encoder x1 with Sample Clock

3) Finite/Continuous Mode with Implicit Sample Clock

The count value is stored into the buffer every time it changes, as shown in Figure 88.

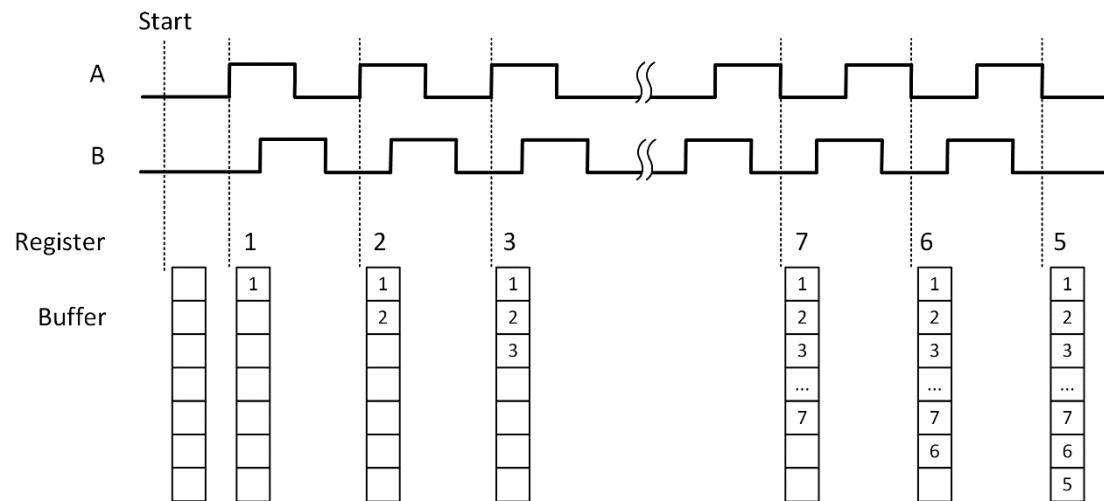


Figure 88 Quadrature Encoder x4 with Implicit Sample Clock

Learn by Examples 6.8.6

- Connect the signal source's two positive terminals to PCIe-5510 first signal input (sinewave, CTR0_Source/A, Pin #11) and second signal input (squarewave , CTR0_AUX/B, Pin#43), two negative terminals to the ground (DGND, Pin#44) and (D_GND, Pin#9) as shown in Figure 2 and Figure 3. (CTR0_Source/A, DGND) consists of the first signal to be measured; (CTR0_AUX/B, D_GND) consists of the second signal to be measured.
- Set a squarewave signal (f=10Hz, Phase=90°) and a squarewave signal (f=10Hz, Phase=0°).

Single Mode

- Open **Counter Input--> Winform CI Single QuadEncoder** and click **Start**. The result is shown below by **CounterValue** according to the counting rules explained in 6.8.6:

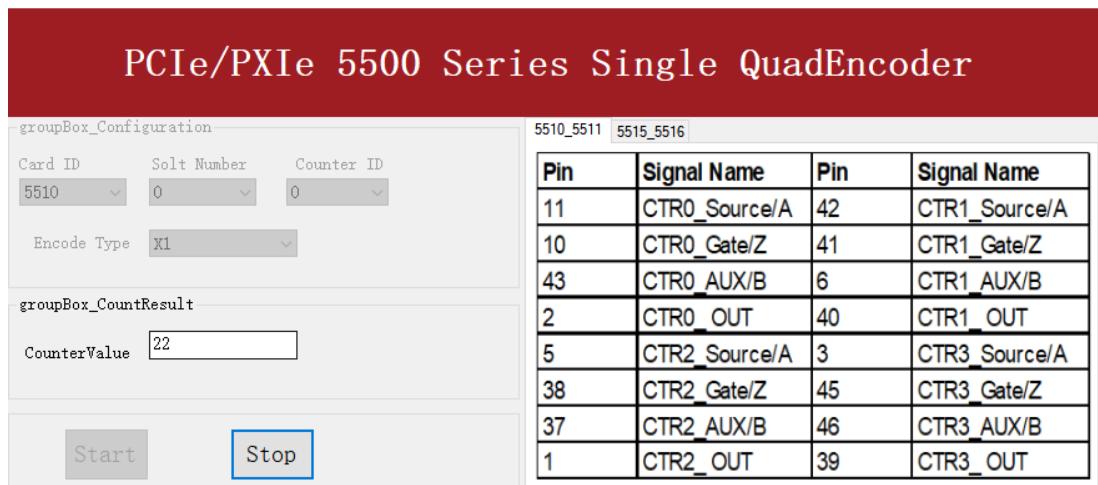


Figure 89 QuadEncoder For Single Mode

- The table in the sample program is a connection diagram for your convenience.
- *Encoding Type* is set by **Encode Type (x1, x2, x4)**.
- When the *encode type* is changed from x1 to x2 and x4, you can see the rising speed of **CounterValue** is twice and four times than x1Mode.

Continuous Mode

- Open **Counter Input--> Winform CI Continuous QuadEncoder** and click **Start**. The result is shown below by **CounterValues**.

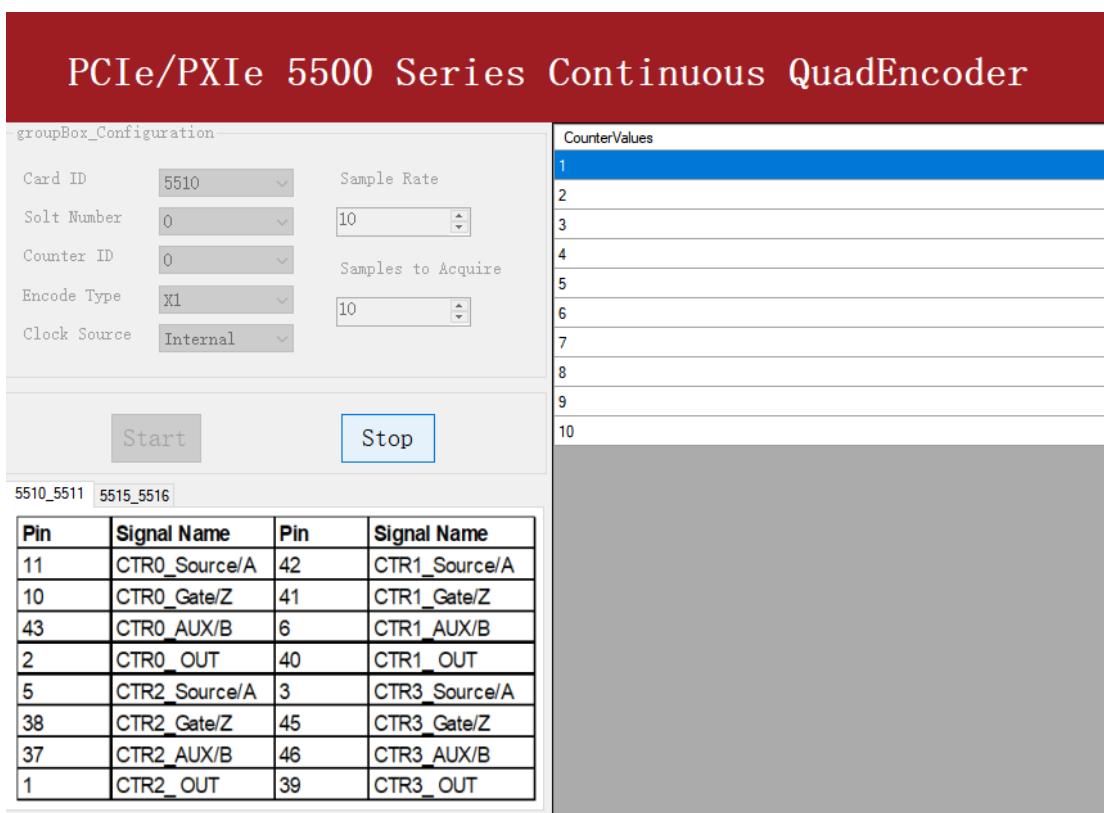


Figure 90 QuadEncoder For Continuous Mode

-
- The table in the sample program is a connection diagram for your convenience.
 - *Encoding Type* is set by **Encode Type (x1, x2, x4)**.
 - When the *encode type* is changed from x1 to x2 and x4, you can see the rising speed of **CounterValue** is twice and four times than x1Mode.

6.8.7 Two-Pulse Encoder

The count value increases on the rising edge of A and decreases on the rising edge of B.

Timing

1) Single Mode

The count value is written to the register on each rising edge of the signal A, and signal B, as shown in Figure 91.

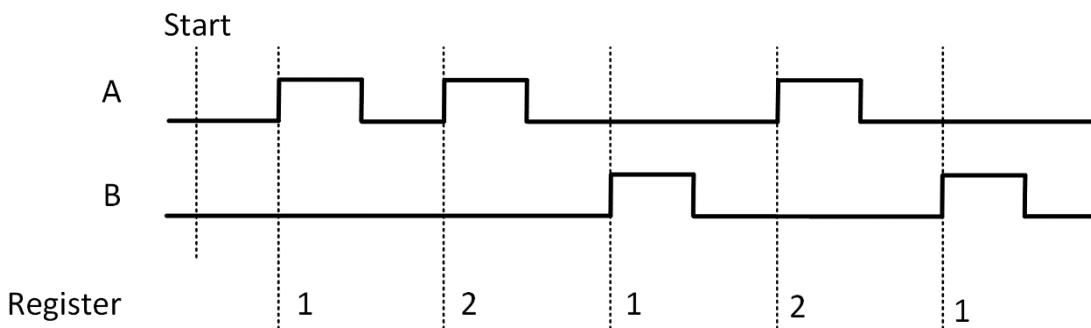


Figure 91 Two-Pulse Encoder in Single Mode

2) Finite/Continuous Mode with Internal Sample Clock

The count value is stored into the buffer on each rising edge of the sample clock, as shown in Figure 92.

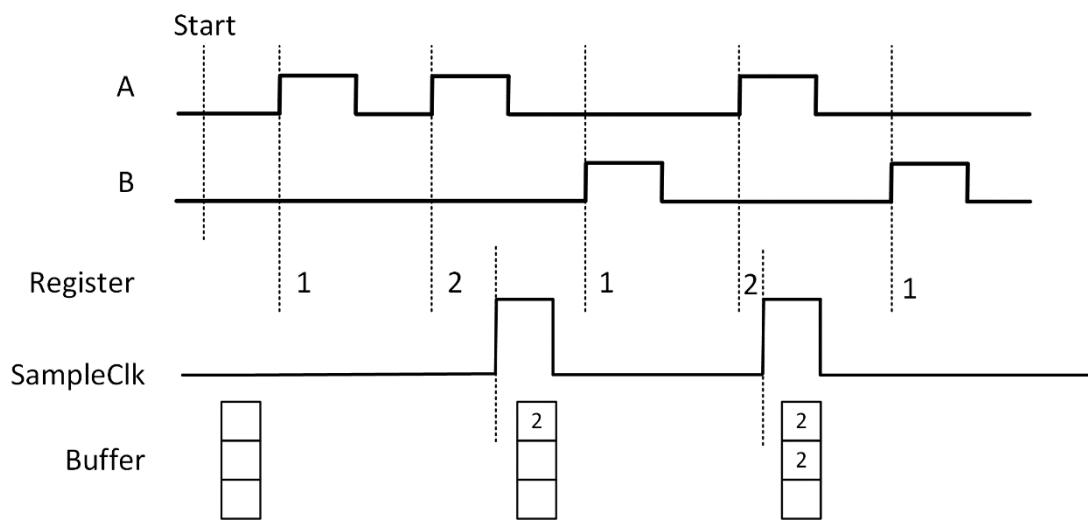


Figure 92 Two-Pulse Encoder with Internal Sample Clock

3) Finite/Continuous Mode with Implicit Sample Clock

The count value is stored into the buffer every time it changed, as shown in Figure 93.

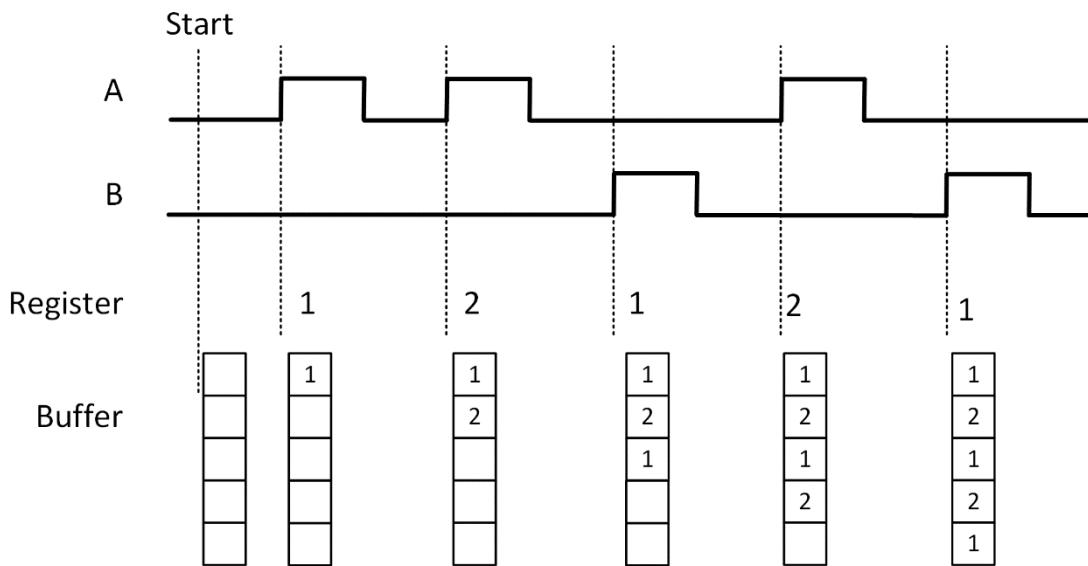


Figure 93 Two-Pulse Encoder with Implicit Sample Clock

Learn by Examples 6.8.7

- Connect the signal source's two positive terminals to PCIe-5510 first signal input (squarewave, CTR0_Source/A, Pin #11) and second signal input (squarewave, CTR0_AUX/B, Pin#43), two negative terminals to the ground (DGND, Pin#44) and (D_GND, Pin#9) as shown in Figure 2 and Figure 3.

- Set a squarewave signal (f=40Hz) and a squarewave signal (f=40Hz).

Single Mode

- Open **Counter Input-->Winform CI Single Two PulseEncoder** and set the numbers as shown.

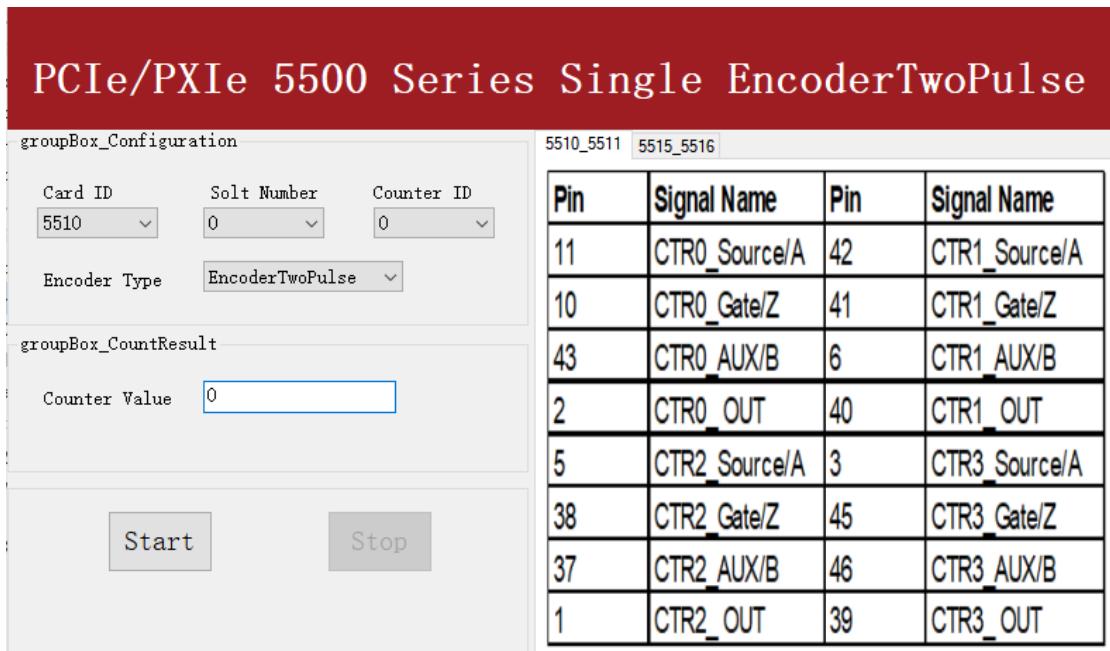


Figure 94 Two-PulseEncoder For Single Mode

- The table in the sample program is a connection diagram for your convenience.
- Click **Start** to start counting. You can see a continuously rising of the **Counter Value**, which follows the counting rules explained in this chapter.

Finite Mode

- Change the frequency of the second channel squarewave from 50Hz to 120Hz.
- Open **Counter Input-->Winform CI Finite Two PulseEncoder** and set the numbers as shown.

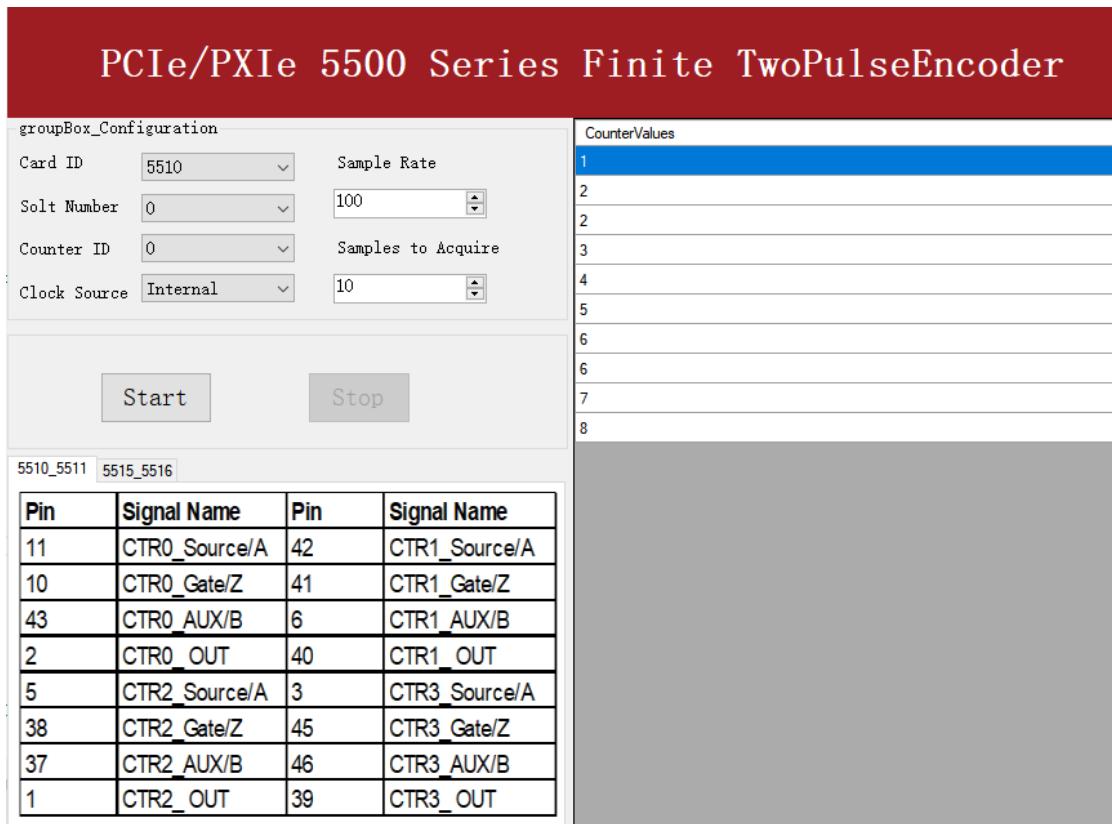


Figure 95 Two-PulseEncoder For Finite Mode

- The table in the sample program is a connection diagram for your convenience.
- Click **Start** and the result is shown above by **Counter Value** in the right list, which follows the counting rules explained in this chapter.

Continuous Mode

- Change the frequency of the second squarewave back to 50 Hz.
- Open **Counter Input-->Winform CI Continuous Two PulseEncoder** and set the numbers as shown.

PCIe/PXIe 5500 Series Continuous TwoPulseEncoder

groupBox_Configuration

Card ID	5510	Sample Rate
Slot Number	0	400
Counter ID	0	Samples to Acquire
Clock Source	Internal	10

Start
Stop

5510_5511	5515_5516		
Pin	Signal Name	Pin	Signal Name
11	CTR0_Source/A	42	CTR1_Source/A
10	CTR0_Gate/Z	41	CTR1_Gate/Z
43	CTR0_AUX/B	6	CTR1_AUX/B
2	CTR0_OUT	40	CTR1_OUT
5	CTR2_Source/A	3	CTR3_Source/A
38	CTR2_Gate/Z	45	CTR3_Gate/Z
37	CTR2_AUX/B	46	CTR3_AUX/B
1	CTR2_OUT	39	CTR3_OUT

CounterValues

10
10
11
11
10
10
10
10
10
10
10
10

Figure 96 Two-PulseEncoder For Continuous Mode

- The table in the sample program is a connection diagram for your convenience.
- Click **Start** and you can see a group of rising numbers in **CounterValues**, which follows the counting rules explained in this chapter.

6.9 Counter Output Operations

6.9.1 Single Pulse Output

The JY-5500 timer/counter can output a single pulse with a specified pulse width. The timing diagram of the pulse output is shown in Figure 97.

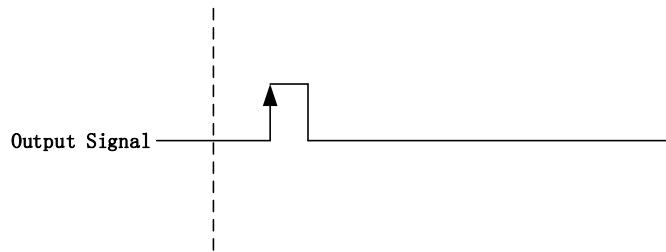


Figure 97 Single Pulse Output

In single pulse output mode, the user could set up the pulse width by configuring the frequency and duty cycle.

If you want to generate a single pulse with 1 ms pulse width, the parameter, frequency should be setup 500Hz and the duty cycle is 50%. Here is the formula for frequency setting:

$$\text{Frequency} = 1 / (1\text{ms} / 0.5) = 500\text{Hz}$$

Learn by Example 6.9.1

- To see the signal that JY-5500 Counter Output generates, it is recommended to connect JY-5500 Counter Output (CTR0_OUT, Pin#2) to JY-5500 AI Ch0 input (AI0+, Pin#68). Please note Counter Output and AI Ch0 input share the same ground so only one connection is needed.
- Open **Counter Output-->Winform CO Single** and click **Start** and set the numbers as follow:

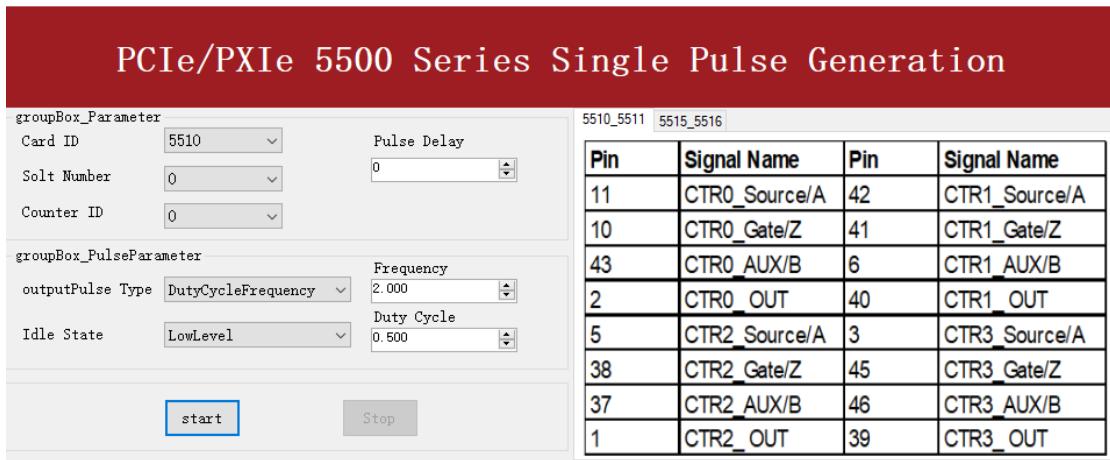


Figure 98 Single Pulse Generation

- The table in the sample program is a connection diagram for your convenience.
- The frequency and duty cycle of the pulse are set by **Frequency** and **Duty Cycle**.
- Please refer Learn by Example to configure an analog input to receive the signal from Counter Output.
- Click **Start** to generate a single pulse as shown.

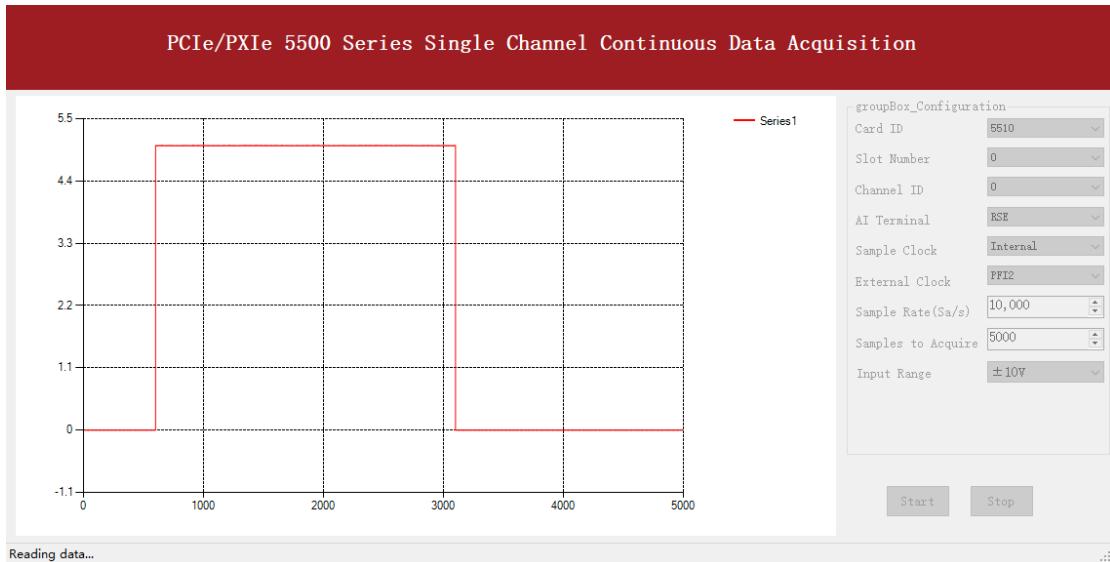


Figure 99 AI Acquisition Single Pulse

6.9.2 Finite Pulse Output

The pulse output timing is as shown in Figure 100.

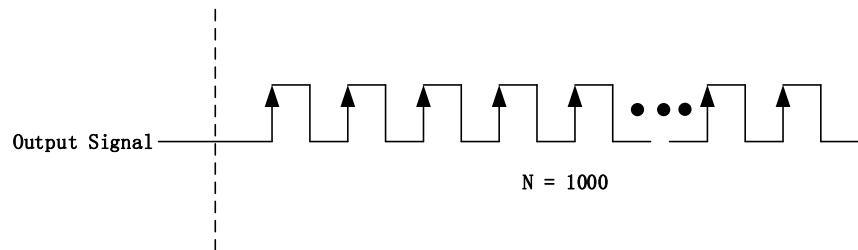


Figure 100 Finite Pulse Output

In finite pulse output mode, the user is required to configure the output frequency, duty cycle and the number of output pulses.

Assuming that the pulse width to be output by the user is 1ms, the frequency calculated according to the duty cycle of 50% is as follows:

$$\text{Set frequency} = 1 / (1\text{ms} / 0.5) = 500\text{Hz}$$

That is to say, when the user sets the frequency as 500Hz and the duty cycle as 0.5, a limited pulse of 1ms pulse width will be obtained.

Learn by Example 6.9.2

- To see the signal that JY-5500 Counter Output generates, it is recommended to connect JY-5500 Counter Output (CTR0_OUT, Pin#2) to JY-5500 AI Ch0 input (AI0+, Pin#68). Please note Counter Output and AI Ch0 input share the same ground so only one connection is needed.
- Open **Counter Output->Winform CO Finite** and click **Start** and set the numbers as follow:

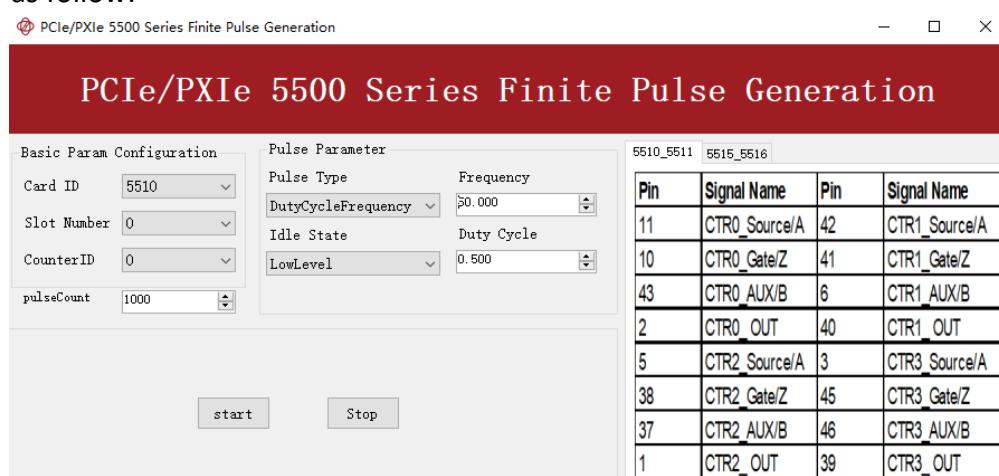


Figure 101 Finite Pulses Generation

- The table in the sample program is a connection diagram for your convenience.
- The frequency and duty cycle of the pulse are set by **Frequency** and **Duty Cycle**.
- Please refer Learn by Example to configure an analog input to receive the signal from Counter Output.
- Click **Start** to generate the pulse shown below.

Figure 102 AI Acquisition Finite Pulse

- According to the picture, the *duty cycle* is 0.5 as set before.

6.9.3 Continuous Pulse Output

The pulse output timing is shown in Figure 103 below.

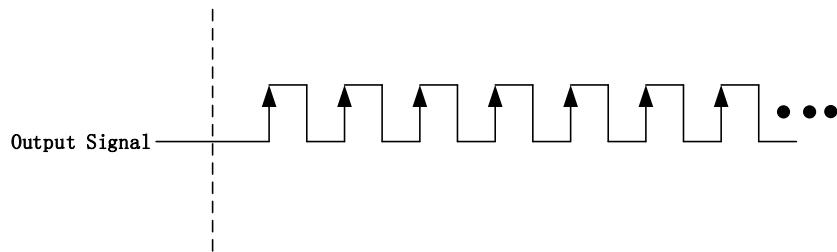


Figure 103 Continuous Pulse Output

In continuous output mode, you need to configure the output frequency and duty cycle. After starting the output, the pulse signal with fixed frequency and duty cycle will be output continuously.

Learn by Example 6.9.3

- To see the signal that JY-5500 Counter Output generates, it is recommended to connect JY-5500 Counter Output (CTR0_OUT, Pin#2) to JY-5500 AI Ch0 input (AI0+, Pin#68). Please note Counter Output and AI Ch0 input share the same ground so only one connection is needed.
- Open **Counter Output-->Winform CO Continuous** and click **Start** and set the numbers as follow:

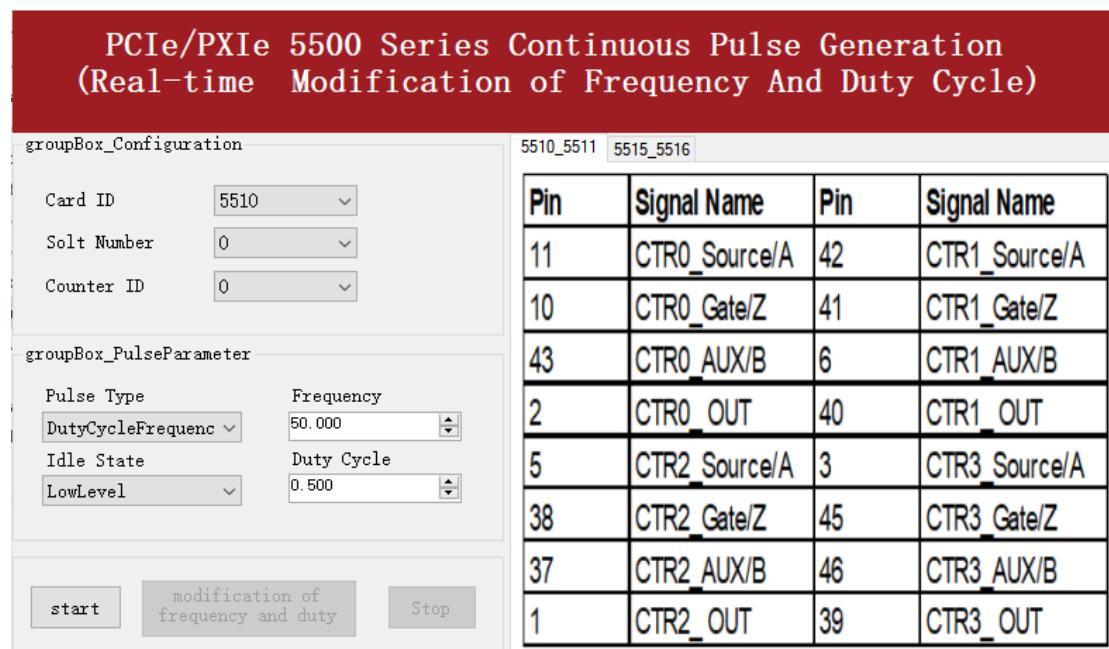


Figure 104 Continuous Pulse Generation

-
- The table in the sample program is a connection diagram for your convenience.
 - The frequency and duty cycle of the pulse are set by **Frequency** and **Duty Cycle**.
- Change the **Duty Cycle** to 0.7 for instance. The result is shown below.

Figure 105 AI Acquisition Continuous Pulse

- According to the picture, the **duty cycle** is 0.7 as set before.

6.10 System Synchronization Interface (SSI) for PCIe Modules

The synchronization between PCIe modules are handled differently from the PXIe synchronization, it is implemented by the system synchronization interface (SSI). SSI is designed as a bidirectional bus and it can synchronize up to four PCIe modules. One PCIe module is designated as the master module and the other PCIe modules are designated as the slave modules.

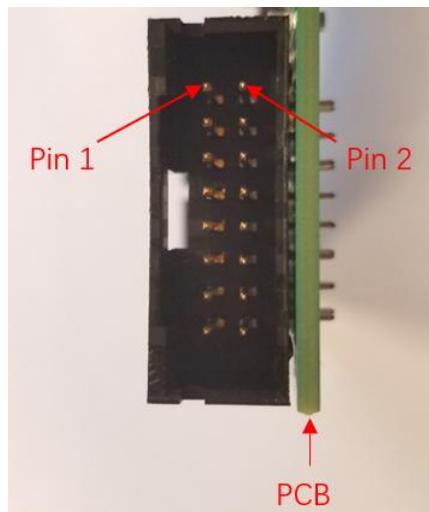


Figure 106 SSI Connector in PCIe-5500

Pin	Signal Name	Signal Name	Pin
1	PXI_TRIGGER0	GND	2
3	PXI_TRIGGER1	GND	4
5	PXI_TRIGGER2	GND	6
7	PXI_TRIGGER3	GND	8
9	PXI_TRIGGER4	GND	10
11	PXI_TRIGGER5	GND	12
13	PXI_TRIGGER6	GND	14
15	PXI_TRIGGER7	GND	16

Table 35 SSI Connector Pin Assignment for PCIe-5500

6.11 DIP Switch in PCIe-5500

PCIe-5500 series modules have a DIP switch. The card number can be adjusted manually by changing the DIP switch setting, which is used to identify the boards with different slot positions.

For example, if you want to set the card number to 3, you could turn the position 2 and 1 of the DIP switch to the ON position and the others to OFF. See below for details.

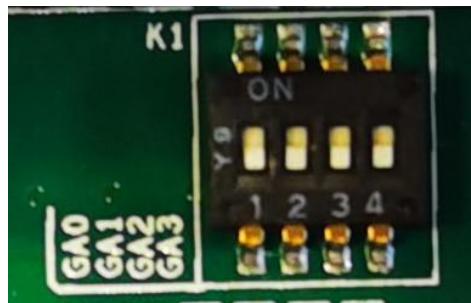


Figure 107 DIP Switch in PCIe-5500

	Position 4 (GA3)	Position 3 (GA2)	Position 2 (GA1)	Position 1 (GA0)
Slot 0	0	0	0	0
Slot 1	0	0	0	1
Slot 2	0	0	1	0
Slot 3	0	0	1	1
Slot 4	0	1	0	0
Slot 5	0	1	0	1
Slot 6	0	1	1	0
Slot 7	0	1	1	1
Slot 8	1	0	0	0
Slot 9	1	0	0	1
Slot 10	1	0	1	0
Slot 11	1	0	1	1
Slot 12	1	1	0	0
Slot 13	1	1	0	1
Slot 14	1	1	1	0
Slot 15	1	1	1	1

Note: OFF=0/ ON=1

Table 36 Relationship between switch position and slot number

7. Calibration

JY-5500 Series boards are precalibrated before the shipment. We recommend you recalibrate JY-5500 board periodically to ensure the measurement accuracy. A commonly accepted practice is one year. If for any reason, you need to recalibrate your board, please contact JYTEK.

8. Using JY-5500 in Other Software

While JYTEK's default application platform is Visual Studio, the programming language is C#, we recognize there are other platforms that are either becoming very popular or have been widely used in the data acquisition applications. Among them are Python, C++ and LabVIEW. This chapter explains how you can use JY-5500 DAQ card using one of this software.

8.1 Python

JYTEK provides and supports a native Python driver for JY-5500 boards. There are many different versions of Python. JYTEK has only tested in CPython version 3.5.4. There is no guarantee that JYTEK python drivers will work correctly with other versions of Python.

If you want to be our partner to support different Python platforms, please contact us.

8.2 C++

We recommend our customers to use C# drivers because C# platform deliver much better efficiency and performance in most situations. We also provide C++ drivers and examples in the Qt IDE, which can be downloaded from web. However, due to the limit of our resources, we do not actively support C++ drivers. If you want to be our partner to support C++ drivers, please contact us.

8.3 LabVIEW

LabVIEW is a software product from National Instruments. JYTEK does not support LabVIEW and will no longer provide LabVIEW interface to JY-5500 boards. Our third-party partners may have LabVIEW support to JY-5500 boards. We can recommend you if you want to convert your LabVIEW applications to C# based applications.

9. About JYTEK

9.1 JYTEK China

Founded in June, 2016, JYTEK China is a leading Chinese test & measurement company, providing complete software and hardware products for the test and measurement industry. The company has evolved from re-branding and reselling PXI(e) and DAQ products to a fully-fledged product company. The company offers complete lines of PXI, DAQ, USB products. More importantly, JYTEK has been promoting open-sourced based ecosystem and offers complete software products. Presently, JYTEK is focused on the Chinese market. Our Shanghai headquarters and production service center have regular stocks to ensure timely supply; we also have R&D centers in Xi'an and Chongqing. We also have highly trained direct technical sales representatives in Shanghai, Beijing, Tianjin, Xi'an, Chengdu, Nanjing, Wuhan, Guangdong, Haerbin, and Changchun. We also have many partners who provide system level support in various cities

9.2 JYTEK Software Platform

JYTEK has developed a complete software platform, SeeSharp Platform, for the test and measurement applications. We leverage the open sources communities to provide the software tools. Our platform software is also open sourced and is free, thus lowering the cost of tests for our customers. We are the only domestic vendor to offer complete commercial software and hardware tools.

9.3 JYTEK Warranty and Support Services

With our complete software and hardware products, JYTEK is able to provide technical and sales services to wide range of applications and customers. In most cases, our products are backed by a 1-year warranty. For technical consultation, pre-sale and after-sales support, please contact JYTEK of your country.

10. Appendix 1 Common Analog Measurement Issues

10.1 Floating Signals and Ground Referenced Signals

Signals to be measured often fall into two categories: floating and ground referenced. The floating signals include battery output, isolated output, thermocouples etc; the ground referenced signals include most instrumentation output signals. Some instruments also offered isolated floating output.

10.2 Differential, NRSE, RSE Modes

The DAQ boards have three measurement modes: differential (DIFF), non-referenced singled end (NRSE), and the referenced single end (RSE). The NRSE mode is also referred as the pseudo differential mode. Under the NRSE mode, the DAQ card provides a common connecting terminal, referred as AI_Sensing. The negative ends of input signal and the DAQ boards are all connected to this terminal, making it look like the differential mode. Thus, the NRSE mode can handle twice as many channels as the DIFF mode.

The three measurement modes and the two types of input signals, floating and ground referenced, form 6 different measurement scenarios as shown in the following.

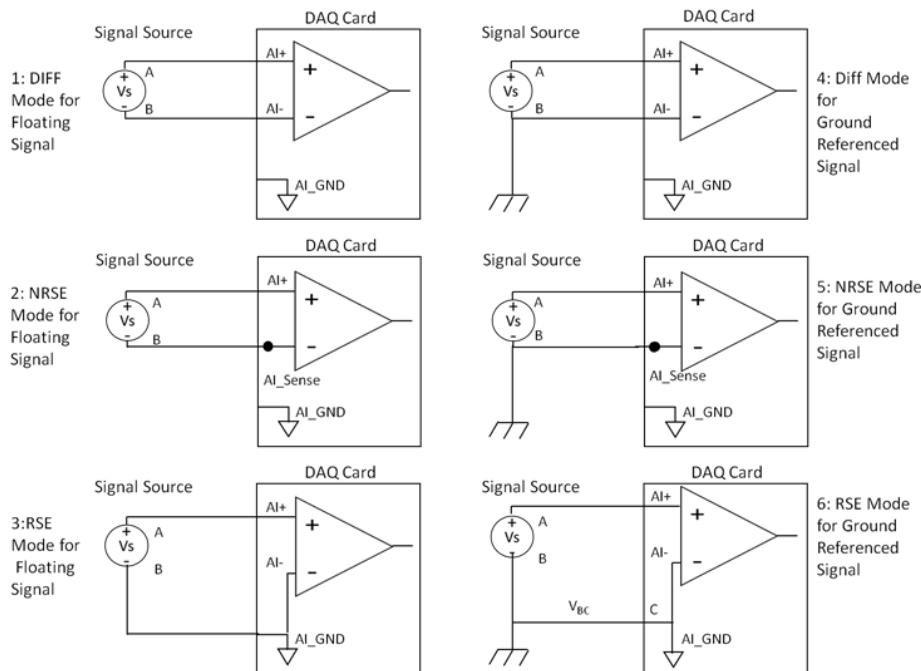


Figure 108 Six Measurement Scenarios

In the first 5 scenarios, V_{AB} is measured voltage. But in the 6th scenario, both the measured signal and the DAQ have own grounds. The two ground may have a voltage difference V_{BC} . The actual measurement is $V_{AC}=V_{AB}+V_{BC}$, not V_{AB} . Due to the ground noise, V_{BC} is quite noisy. This affects the measurement accuracy. The caution must be taken using 6th mode.

10.3 Reducing the Common Mode Voltage Effect

In the first 2 modes, the measured signal is floating. It is quite often that the common mode voltage will appear. To reduce this effect on the measurement accuracy, a resistor can be added as shown. The value of this resistor depends on the impedance of the signal source. As a rule of thumb, R should be 1000 times of the signal source output impedance, roughly 10K to 100K Ω . At this level, R has very little impact on the measurement.

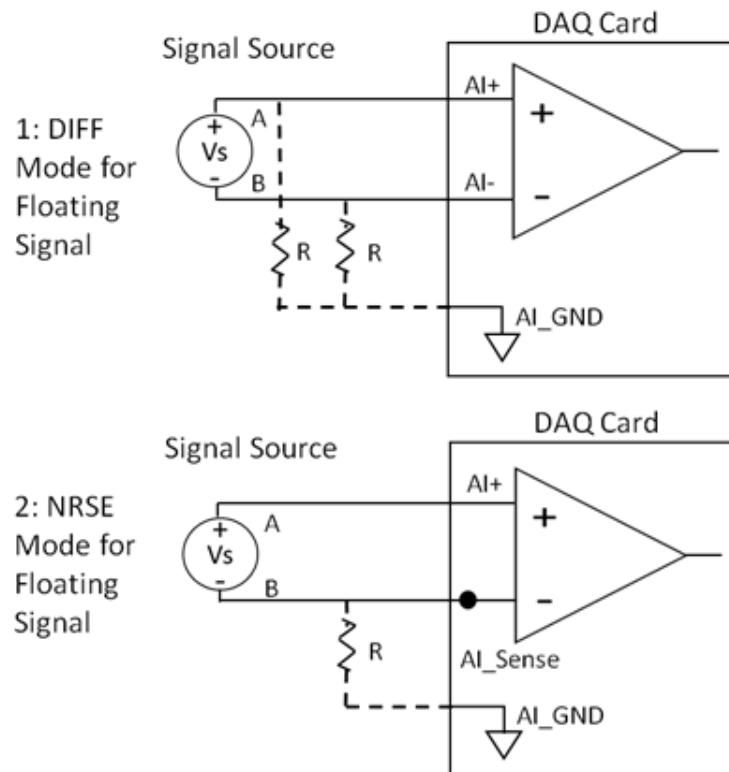


Figure 109 Using Resistor to Reduce Common Mode Voltage Effect

10.4 DC, AC and DSA Mode

Figure 110 shows three different measurement modes: DC, AC and DSA. It is important to know what type of the measurement you are making. Table 37 shows differences and features in these three modes.

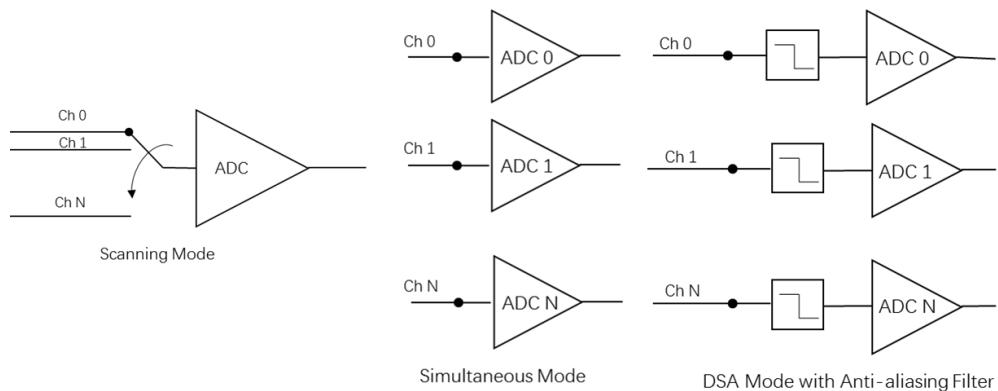


Figure 110 DC, AC and DSA Mode

	DC	AC	DSA
Signal Frequency (f)	$f=0$, or $f \leq \varepsilon * f_s / 10$	$f_s > 5f$	$f_s > 2.5f$
Anti-aliasing Filter	No	No	Yes
Measurements			
Single point voltage accuracy	Yes	Maybe	No
Power Spectrum	No	Maybe	Yes
Rising/falling edges	No	Yes	No
Averaging	Time	Frequency	Frequency
ADC Mode			
Scanning	Optional	Optional	No
Scanning Interval (T)	$T \ll 1/f$	$T \ll 1/f$	N/A
Simutaneous	Optional	Optional	Yes

f_s : channel sampling rate; ε : total accuracy;

Table 37 DC, AC, DSA Measurements

10.4.1 DC Mode

In a DC mode, the signal frequency f should be zero or very small. Many times, engineers use averaging to reduce the noise effect. But inappropriate use of averaging will not reduce the noise effect but introduce the error. Given the **Total Accuracy ε** , from Sections 4.3.1, 4.3.4, 4.3.4, the maximum source signal frequency f should be bounded by:

$$f \leq \frac{\varepsilon}{10} f_s$$

where f_s is the sample rate. This formula can be used in both the DAQ and the DS Mode. This formula suggests that a faster sampling device such as JY-5500 can allow bigger signal changes and still achieve excellent accuracy.

10.4.2 AC Mode

The AC mode traditionally measures power line voltage of 50Hz or 60Hz, but has been extended to other frequencies. Due to the alternating nature of the AC signal, the average cannot be done in the time domain. If averaging must be used, it is used in the frequency domain when measuring the power spectrum.

If you use the 1M/N maximum channel sample rate of JY-5500 in the multi-channel mode, the channel switching error cannot be ignored, as seen in Table 30. If you need better accuracy, you should consider using the simultaneous DAQ devices such as JYTEK PXIe-5315. These devices do not use scanning mode. Rather, each channel is serviced by a dedicated ADC to avoid the channel switching error. This ensures better AC accuracy as well as better synchronization.

Another use of the AC measurement is to analyze the signal's change. In this case, the sample rate must be sufficiently higher than the signal frequency to catch the changing nature of the signal. As a rule of thumb, 5 times of the signal frequency is often used.

10.4.3 DSA Mode

The DSA (Dynamic Signal Analysis) mode mostly measures the signal frequency spectrum. In order to reduce the noise and increase the dynamic range, an anti-aliasing filter is used. Similar to the simultaneous mode, each channel is serviced by a dedicated ADC. To meet the sampling theorem, the sample rate f_s should be at least 2.5 times of the signal frequency.

JY-5500 boards are not designed for the DSA measurements. There is no anti-aliasing filter in a JY-5500 board.

11. Statement

The hardware and software products described in this manual are provided by JYTEK China, or JYTEK in short.

This manual provides the product review, quick start, some driver interface explanation for JYTEK JY-5500 Series family of multi-function data acquisition boards. The manual is copyrighted by JYTEK.

No warranty is given as to any implied warranties, express or implied, including any purpose or non-infringement of intellectual property rights, unless such disclaimer is legally invalid. JYTEK is not responsible for any incidental or consequential damages related to performance or use of this manual. The information contained in this manual is subject to change without notice.

While we try to keep this manual up to date, there are factors beyond our control that may affect the accuracy of the manual. Please check the latest manual and product information from our website.

Shanghai Jianyi Technology Co., Ltd.

Address: Room 201, Building 3, NO.300 Fangchun Road, Shanghai.

Post Code: 201203

Tel: 021-5047 5899

Website: www.jytek.com